Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-controlled self-assembly of non-photoresponsive nanoparticles

Abstract

The ability to guide the assembly of nanosized objects reversibly with external stimuli, in particular light, is of fundamental importance, and it contributes to the development of applications as diverse as nanofabrication and controlled drug delivery. However, all the systems described to date are based on nanoparticles (NPs) that are inherently photoresponsive, which makes their preparation cumbersome and can markedly hamper their performance. Here we describe a conceptually new methodology to assemble NPs reversibly using light that does not require the particles to be functionalized with light-responsive ligands. Our strategy is based on the use of a photoswitchable medium that responds to light in such a way that it modulates the interparticle interactions. NP assembly proceeds quantitatively and without apparent fatigue, both in solution and in gels. Exposing the gels to light in a spatially controlled manner allowed us to draw images that spontaneously disappeared after a specific period of time.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The concept of light-controlled self-assembly of non-photoresponsive NPs.
Figure 2: Reversibility of NP assembly in a photoresponsive medium.
Figure 3: Effect of NP curvature on the kinetics of aggregation in a photoresponsive medium.
Figure 4: Reversible trapping and release of a model dye using NPs in a photoresponsive medium.
Figure 5: Writing self-erasing images with NPs in a photoresponsive gel.

Similar content being viewed by others

References

  1. Nie, Z. H., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotech. 5, 15–25 (2010).

    Article  CAS  Google Scholar 

  2. Park, E. J. et al. Using light to covalently immobilize and pattern nanoparticles onto surfaces. Langmuir 28, 10934–10941 (2012).

    Article  CAS  Google Scholar 

  3. Pascall, A. J. et al. Light-directed electrophoretic deposition: a new additive manufacturing technique for arbitrarily patterned 3D composites. Adv. Mater. 26, 2252–2256 (2014).

    Article  CAS  Google Scholar 

  4. Sun, C., Lee, J. S. H. & Zhang, M. Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60, 1252–1265 (2008).

    Article  CAS  Google Scholar 

  5. Chertok, B. et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487–496 (2008).

    Article  CAS  Google Scholar 

  6. Lalatonne, Y., Richardi, J. & Pileni, M. P. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nature Mater. 3, 121–125 (2004).

    Article  CAS  Google Scholar 

  7. Das, S. et al. Dual-responsive nanoparticles and their self-assembly. Adv. Mater. 25, 422–426 (2013).

    Article  CAS  Google Scholar 

  8. Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    Article  CAS  Google Scholar 

  9. Petit, C., Russier, V. & Pileni, M. P. Effect of the structure of cobalt nanocrystal organization on the collective magnetic properties. J. Phys. Chem. B 107, 10333–10336 (2003).

    Article  CAS  Google Scholar 

  10. Li, Y., Zhang, X. L., Qiu, Z. R., Qiao, R. & Kang, Y. S. Investigation of Co nanoparticle assemblies induced by magnetic field. J. Ind. Eng. Chem. 14, 22–27 (2008).

    Article  Google Scholar 

  11. Jang, J. T. et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed. 48, 1234–1238 (2009).

    Article  CAS  Google Scholar 

  12. Ranganath, K. V. S. & Glorius, F. Superparamagnetic nanoparticles for asymmetric catalysis—a perfect match. Catal. Sci. Tech. 1, 13–22 (2011).

    Article  CAS  Google Scholar 

  13. Gawande, M. B., Branco, P. S. & Varma, R. S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 42, 3371–3393 (2013).

    Article  CAS  Google Scholar 

  14. Yavuz, C. T. et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314, 964–967 (2006).

    Article  Google Scholar 

  15. Cho, M. H. et al. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nature Mater. 11, 1038–1043 (2012).

    Article  CAS  Google Scholar 

  16. Lee, J. H. et al. Artificial control of cell signaling and growth by magnetic nanoparticles. Angew. Chem. Int. Ed. 49, 5698–5702 (2010).

    Article  CAS  Google Scholar 

  17. Yang, Y., Erb, R. M., Wiley, B. J., Zauscher, S. & Yellen, B. B. Imaginary magnetic tweezers for massively parallel surface adhesion spectroscopy. Nano Lett. 11, 1681–1684 (2011).

    Article  CAS  Google Scholar 

  18. Demirörs, A. F., Pillai, P. P., Kowalczyk, B. & Grzybowski, B. A. Colloidal assembly directed by virtual magnetic moulds. Nature 503, 99–103 (2013).

    Article  Google Scholar 

  19. Erb, R. M., Son, H. S., Samanta, B., Rotello, V. M. & Yellen, B. B. Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457, 999–1002 (2009).

    Article  CAS  Google Scholar 

  20. He, L. et al. Magnetic assembly of nonmagnetic particles into photonic crystal structures. Nano Lett. 10, 4708–4714 (2010).

    Article  CAS  Google Scholar 

  21. He, L., Wang, M. S., Ge, J. P. & Yin, Y. D. Magnetic assembly route to colloidal responsive photonic nanostructures. Acc. Chem. Res. 45, 1431–1440 (2012).

    Article  CAS  Google Scholar 

  22. Wei, Y. H., Han, S. B., Kim, J., Soh, S. L. & Grzybowski, B. A. Photoswitchable catalysis mediated by dynamic aggregation of nanoparticles. J. Am. Chem. Soc. 132, 11018–11020 (2010).

    Article  CAS  Google Scholar 

  23. Piech, M., George, M. C., Bell, N. S. & Braun, P. V. Patterned colloid assembly by grafted photochromic polymer layers. Langmuir 22, 1379–1382 (2006).

    Article  CAS  Google Scholar 

  24. Manna, A. et al. Optimized photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides. Chem. Mater. 15, 20–28 (2003).

    Article  CAS  Google Scholar 

  25. Klajn, R., Wesson, P. J., Bishop, K. J. M. & Grzybowski, B. A. Writing self-erasing images using metastable nanoparticle ‘inks’. Angew. Chem. Int. Ed. 48, 7035–7039 (2009).

    Article  CAS  Google Scholar 

  26. Chovnik, O., Balgley, R., Goldman, J. R. & Klajn, R. Dynamically self-assembling carriers enable guiding of diamagnetic particles by weak magnets. J. Am. Chem. Soc. 134, 19564–19567 (2012).

    Article  CAS  Google Scholar 

  27. Shiraishi, Y. et al. Spiropyran-modified gold nanoparticles: reversible size control of aggregates by UV and visible light irradiations. ACS Appl. Mater. Interfaces 6, 7554–7562 (2014).

    Article  CAS  Google Scholar 

  28. Liu, D. B. et al. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew. Chem. Int. Ed. 50, 4103–4107 (2011).

    Article  CAS  Google Scholar 

  29. Ueda, M., Kim, H. B. & Ichimura, K. Photocontrolled aggregation of colloidal silica. J. Mater. Chem. 4, 883–889 (1994).

    Article  CAS  Google Scholar 

  30. Bell, N. S. & Piech, M. Photophysical effects between spirobenzopyran–methyl methacrylate-functionalized colloidal particles. Langmuir 22, 1420–1427 (2006).

    Article  CAS  Google Scholar 

  31. Zhang, J., Whitesell, J. K. & Fox, M. A. Photoreactivity of self-assembled monolayers of azobenzene or stilbene derivatives capped on colloidal gold clusters. Chem. Mater. 13, 2323–2331 (2001).

    Article  CAS  Google Scholar 

  32. Klajn, R. Immobilized azobenzenes for the construction of photoresponsive materials. Pure Appl. Chem. 82, 2247–2279 (2010).

    Article  Google Scholar 

  33. Satoh, T., Sumaru, K., Takagi, T. & Kanamori, T. Fast-reversible light-driven hydrogels consisting of spirobenzopyran-functionalized poly(N-isopropylacrylamide). Soft Matter 7, 8030–8034 (2011).

    Article  CAS  Google Scholar 

  34. Stumpel, J. E., Liu, D. Q., Broer, D. J. & Schenning, A. Photoswitchable hydrogel surface topographies by polymerisation-induced diffusion. Chem. Eur. J. 19, 10922–10927 (2013).

    Article  CAS  Google Scholar 

  35. Xie, X. J., Crespo, G. A., Mistlberger, G. & Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nature Chem. 6, 202–207 (2014).

    Article  CAS  Google Scholar 

  36. Florea, L. et al. Photo-chemopropulsion—light-stimulated movement of microdroplets. Adv. Mater. 43, 7339–7345 (2014).

    Article  Google Scholar 

  37. Maity, C., Hendriksen, W. E., van Esch, J. H. & Eelkema, R. Spatial structuring of a supramolecular hydrogel by using a visible-light triggered catalyst. Angew. Chem. Int. Ed. 54, 998–1001 (2015).

    Article  CAS  Google Scholar 

  38. Shi, Z., Peng, P., Strohecker, D. & Liao, Y. Long-lived photoacid based upon a photochromic reaction. J. Am. Chem. Soc. 133, 14699–14703 (2011).

    Article  CAS  Google Scholar 

  39. Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 43, 148–184 (2014).

    Article  CAS  Google Scholar 

  40. Fasting, C. et al. Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed. 51, 10472–10498 (2012).

    Article  CAS  Google Scholar 

  41. Lee, J.-W. & Klajn, R. Dual-responsive nanoparticles that aggregate under the simultaneous action of light and CO2 . Chem. Commun. 51, 2036–2039 (2015).

    Article  CAS  Google Scholar 

  42. Zheng, Y. B. et al. Surface-enhanced Raman spectroscopy to probe photoreaction pathways and kinetics of isolated reactants on surfaces: flat versus curved substrates. Nano Lett. 12, 5362–5368 (2012).

    Article  CAS  Google Scholar 

  43. Zdobinsky, T., Maiti, P. S. & Klajn, R. Support curvature and conformational freedom control chemical reactivity of immobilized species. J. Am. Chem. Soc. 136, 2711–2714 (2014).

    Article  Google Scholar 

  44. Klajn, R. et al. Metal nanoparticles functionalized with molecular and supramolecular switches. J. Am. Chem. Soc. 131, 4233–4235 (2009).

    Article  CAS  Google Scholar 

  45. Moldt, T. et al. Tailoring the properties of surface-immobilized azobenzenes by monolayer dilution and surface curvature. Langmuir 31, 1048–1057 (2015).

    Article  CAS  Google Scholar 

  46. Wang, D. W. et al. How and why nanoparticle's curvature regulates the apparent pKa of the coating ligands. J. Am. Chem. Soc. 133, 2192–2197 (2011).

    Article  CAS  Google Scholar 

  47. Liu, Y. Z., Lin, X. M., Sun, Y. G. & Rajh, T. In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc. 135, 3764–3767 (2013).

    Article  CAS  Google Scholar 

  48. Xia, H. B., Su, G. & Wang, D. Y. Size-dependent electrostatic chain growth of pH-sensitive hairy nanoparticles. Angew. Chem. Int. Ed. 52, 3726–3730 (2013).

    Article  CAS  Google Scholar 

  49. Onoda, M., Uchiyama, S., Santa, T. & Imai, K. A photoinduced electron-transfer reagent for peroxyacetic acid, 4-ethylthioacetylamino-7-phenylsulfonyl-2,1,3-benzoxadiazole, based on the method for predicting the fluorescence quantum yields. Anal. Chem. 74, 4089–4096 (2002).

    Article  CAS  Google Scholar 

  50. Narayanan, R. & El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B 109, 12663–12676 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (grant number 336080), the Israel Science Foundation (grant number 1463/11) and the Gerhardt Schmidt-Minerva Center on Supramolecular Architectures.

Author information

Authors and Affiliations

Authors

Contributions

R.K. conceived and designed the experiments. P.K.K., D.S., R.L., B.M. and M.B. performed the experiments. H.Z., T.U. and D.M. contributed materials and/or analysis tools. R.K. wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Rafal Klajn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 690 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, P., Samanta, D., Leizrowice, R. et al. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nature Chem 7, 646–652 (2015). https://doi.org/10.1038/nchem.2303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing