Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemoselective conversion of biologically sourced polyols into chiral synthons

An Erratum to this article was published on 20 August 2015

This article has been updated

Abstract

Crude oil currently provides much of the world's energy, but it is also the source of many feedstock chemicals. Methodology for the conversion of biomass into useful chemicals has often focused on either complete deoxygenation or the production of high-volume platform chemicals. Here, we describe the chemoselective partial reduction of silyl-protected C6O6-derived polyols to produce a diverse set of oxygen-functionalized chiral synthons. The combination of B(C6F5)3 and a tertiary silane efficiently generates a reactive equivalent of an electrophilic silylium ion (R3Si+) and a hydride (H) reducing agent. The mechanism of oxygen loss does not involve a dehydrative elimination and thus avoids ablation of stereochemistry. Neighbouring group participation and the formation of cyclic intermediates is key to achieving selectivity in these reactions and, where both primary and secondary C–O bonds are present, the mechanism allows further control. The method provides—in one or two synthetic steps—highly improved syntheses of many C6On synthons as well as several previously undescribed products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BCF-catalysed reduction of C6O6 feedstocks.
Figure 2: Partial reduction of persilylated hexols gives a mixture of tetra- and trioxygenated products.
Figure 3: Evidence for the formation of cyclic intermediates in selective reduction.
Figure 4: Selective reduction of 1,2-deoxysugars.
Figure 5: Partial reduction of isosorbide and isomannide.

Similar content being viewed by others

Change history

  • 11 August 2015

    In the original graphical abstract for this Article, an in-house error meant that an incorrect intermediate was shown; this has now been corrected in the online versions.

  • 20 August 2015

    Nature Chemistry 7, 576–581 (2015); published online 23 June 2015; corrected after print 11 August 2015. In the original graphical abstract for this Article, an in-house error meant that an incorrect intermediate was shown; this has now been corrected in the online versions, and should have appearedas shown below.

References

  1. Corma, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007).

    Article  CAS  Google Scholar 

  2. Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41, 1538–1558 (2012).

    Article  CAS  Google Scholar 

  3. Luterbacher, J. S., Alonso, D. M. & Dumesic, J. A. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem. 16, 4816–4838 (2014).

    Article  CAS  Google Scholar 

  4. Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A. & Poliakoff, M. Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012).

    Article  CAS  Google Scholar 

  5. Ruppert, A. M., Weinberg, K. & Palkovits, R. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed. 51, 2564–2601 (2012).

    Article  CAS  Google Scholar 

  6. De Souza, R. O. M. A., Miranda, L. S. M. & Luque, R. Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chem. 16, 2386–2405 (2014).

    Article  CAS  Google Scholar 

  7. van Putten, R. J. et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 113, 1499–1597 (2013).

    Article  CAS  Google Scholar 

  8. Mascal, M. & Nikitin, E. B. Direct, high-yield conversion of cellulose into biofuel. Angew. Chem. Int. Ed. 47, 7924–7926 (2008).

    Article  CAS  Google Scholar 

  9. Bond, J. Q. et al. Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energ. Environ. Sci. 7, 1500–1523 (2014).

    Article  CAS  Google Scholar 

  10. Bozell, J. J. & Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's ‘Top 10’ revisited. Green Chem. 12, 539–554 (2010).

    Article  CAS  Google Scholar 

  11. Hollingsworth, R. I. & Wang, G. Toward a carbohydrate-based chemistry: progress in the development of general-purpose chiral synthons from carbohydrates. Chem. Rev. 100, 4267–4282 (2000).

    Article  CAS  Google Scholar 

  12. Schlaf, M. Selective deoxygenation of sugar polyols to alpha,omega-diols and other oxygen content reduced materials—a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis. Dalton Trans. 4645–4653 (2006).

  13. Robles, O. & Romo, D. Chemo- and site-selective derivatizations of natural products enabling biological studies. Nat. Prod. Rep. 31, 318–334 (2014).

    Article  CAS  Google Scholar 

  14. Mahatthananchai, J., Dumas, A. M. & Bode, J. W. Catalytic selective synthesis. Angew. Chem. Int. Ed. 51, 10954–10990 (2012).

    Article  CAS  Google Scholar 

  15. Han, S. & Miller, S. J. Asymmetric catalysis at a distance: catalytic, site-selective phosphorylation of teicoplanin. J. Am. Chem. Soc. 135, 12414–12421 (2013).

    Article  CAS  Google Scholar 

  16. Dechert-Schmitt, A. M. R., Schmitt, D. C. & Krische, M. J. Protecting-group-free diastereoselective C–C coupling of 1,3-glycols and allyl acetate through site-selective primary alcohol dehydrogenation. Angew. Chem. Int. Ed. 52, 3195–3198 (2013).

    Article  CAS  Google Scholar 

  17. Gouliaras, C., Lee, D., Chan, L. N. & Taylor, M. S. Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. J. Am. Chem. Soc. 133, 13926–13929 (2011).

    Article  CAS  Google Scholar 

  18. Kawabata, T., Muramatsu, W., Nishio, T., Shibata, T. & Schedel, H. A catalytic one-step process for the chemo- and regioselective acylation of monosaccharides. J. Am. Chem. Soc. 129, 12890–12895 (2007).

    Article  CAS  Google Scholar 

  19. McLaughlin, M. P., Adduci, L. L., Becker, J. J. & Gagné, M. R. Iridium-catalyzed hydrosilylative reduction of glucose to hexane(s). J. Am. Chem. Soc. 135, 1225–1227 (2013).

    Article  CAS  Google Scholar 

  20. Adduci, L. L., McLaughlin, M. P., Bender, T. A., Becker, J. J. & Gagné, M. R. Metal-free deoxygenation of carbohydrates. Angew. Chem. Int. Ed. 53, 1646–1649 (2014).

    Article  CAS  Google Scholar 

  21. Robert, T. & Oestreich, M. SiH bond activation: bridging Lewis acid catalysis with Brookhart's iridium(III) pincer complex and B(C6F5)3 . Angew. Chem. Int. Ed. 52, 5216–5218 (2013).

    Article  CAS  Google Scholar 

  22. Gevorgyan, V., Rubin, M., Benson, S., Liu, J-X. & Yamamoto, Y. A novel B(C­6F5)3-catalyzed reduction of alcohols and cleavage of aryl and alkyl ethers with hydrosilanes. J. Org. Chem. 65, 6179–6186 (2000).

    Article  CAS  Google Scholar 

  23. Gevorgyan, V., Rubin, M., Liu, J. X. & Yamamoto, Y. A direct reduction of aliphatic aldehyde, acyl chloride, ester, and carboxylic functions into a methyl group. J. Org. Chem. 66, 1672–1675 (2001).

    Article  CAS  Google Scholar 

  24. Parks, D. J., Blackwell, J. M. & Piers, W. E. Studies on the mechanism of B(C6F5)3-catalyzed hydrosilation of carbonyl functions. J. Org. Chem. 65, 3090–3098 (2000).

    Article  CAS  Google Scholar 

  25. Parks, D. J. & Piers, W. E. Tris(pentafluorophenyl)boron-catalyzed hydrosilation of aromatic aldehydes, ketones, and esters. J. Am. Chem. Soc. 118, 9440–9441 (1996).

    Article  CAS  Google Scholar 

  26. Chandrasekhar, S., Reddy, C. R. & Babu, B. N. Rapid defunctionalization of carbonyl group to methylene with polymethylhydrosiloxane-B(C6F5)3 . J. Org. Chem. 67, 9080–9082 (2002).

    Article  CAS  Google Scholar 

  27. Nimmagadda, R. D. & McRae, C. A novel reduction reaction for the conversion of aldehydes, ketones and primary, secondary and tertiary alcohols into their corresponding alkanes. Tetrahedron Lett. 47, 5755–5758 (2006).

    Article  CAS  Google Scholar 

  28. Oestreich, M., Hermke, J. & Mohr, J. A unified survey of Si–H and H–H bond activation catalysed by electron-deficient boranes. Chem. Soc. Rev. 44, 2202–2220 (2015).

    Article  CAS  Google Scholar 

  29. Houghton, A. Y., Hurmalainen, J., Mansikkamäki, A., Piers, W. E. & Tuononen, H. M. Direct observation of a borane–silane complex involved in frustrated Lewis-pair-mediated hydrosilylations. Nature Chem. 6, 983–988 (2014).

    Article  CAS  Google Scholar 

  30. Rendler, S. & Oestreich, M. Conclusive evidence for an SN2-Si mechanism in the B(C6F5)3-catalyzed hydrosilylation of carbonyl compounds: implications for the related hydrogenation. Angew. Chem. Int. Ed. 47, 5997–6000 (2008).

    Article  CAS  Google Scholar 

  31. Haskins, W. T., Hann, R. M. & Hudson, C. S. 2,3,4,5-Dimethylene-D-mannitol and a second dimethylene-D-mannitol. J. Am. Chem. Soc. 65, 67–70 (1943).

    Article  CAS  Google Scholar 

  32. Zissis, E. & Richtmyer, N. K. The preparation of 1,6-didesoxy-D-altritol, 1,6-didesoxygalactitol and 1,6-didesoxy-L-mannitol. J. Am. Chem. Soc. 74, 4373–4377 (1952).

    Article  CAS  Google Scholar 

  33. Park, C. Y., Kim, B. M. & Sharpless, K. B. Catalytic osmylation of conjugated dienes : a one-pot stereoselective synthesis of polyols. Tetrahedron Lett. 32, 1003–1006 (1991).

    Article  CAS  Google Scholar 

  34. Higashibayashi, S., Czechtizky, W., Kobayashi, Y. & Kishi, Y. Universal NMR databases for contiguous polyols. J. Am. Chem. Soc. 125, 14379–14393 (2003).

    Article  CAS  Google Scholar 

  35. Yang, J., White, P. S. & Brookhart, M. Scope and mechanism of the iridium-catalyzed cleavage of alkyl ethers with triethylsilane. J. Am. Chem. Soc. 130, 17509–17518 (2008).

    Article  CAS  Google Scholar 

  36. Reed, C. A. The silylium ion problem, R3Si+. Bridging organic and inorganic chemistry. Acc. Chem. Res. 31, 325–332 (1998).

    Article  CAS  Google Scholar 

  37. Douvris, C., Nagaraja, C. M., Chen, C. H., Foxman, B. M. & Ozerov, O. V. Hydrodefluorination and other hydrodehalogenation of aliphatic carbon–halogen bonds using silylium catalysis. J. Am. Chem. Soc. 132, 4946–4953 (2010).

    Article  CAS  Google Scholar 

  38. Nava, M. & Reed, C. A. Triethylsilyl perfluoro-tetraphenylborate, [Et3Si+][F20BPh4], a widely used nonexistent compound. Organometallics 30, 4798–4800 (2011).

    Article  CAS  Google Scholar 

  39. Connelly, S. J., Kaminsky, W. & Heinekey, D. M. Structure and solution reactivity of (triethylsilylium)triethylsilane cations. Organometallics 32, 7478–7481 (2013).

    Article  CAS  Google Scholar 

  40. Tantillo, D. J. The carbocation continuum in terpene biosynthesis—where are the secondary cations? Chem. Soc. Rev. 39, 2847–2854 (2010).

    Article  CAS  Google Scholar 

  41. Rose, M. & Palkovits, R. Isosorbide as a renewable platform chemical for versatile applications—quo vadis? ChemSusChem 5, 167–176 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Energy (DE-FG02-05ER15630) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

L.L.A., T.A.B. and M.R.G. conceived and designed the experiments. L.L.A., T.A.B. and J.A.D. performed the experiments. All co-authors participated in the process of data analysis and the writing of the paper.

Corresponding author

Correspondence to Michel R. Gagné.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adduci, L., Bender, T., Dabrowski, J. et al. Chemoselective conversion of biologically sourced polyols into chiral synthons. Nature Chem 7, 576–581 (2015). https://doi.org/10.1038/nchem.2277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing