Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adsorption-induced auto-amplification of enantiomeric excess on an achiral surface

Abstract

The homochirality of biomolecules is a signature of life on Earth and has significant implications in, for example, the production of pharmaceutical compounds. It has been suggested that biomolecular homochirality may have arisen from the amplification of a spontaneously formed small enantiomeric excess (e.e.). Many minerals exhibit naturally chiral surfaces and so adsorption has been proposed as one possible mechanism for such an amplification of e.e. Here we show that when gas-phase mixtures of D- and L-aspartic acid are exposed to an achiral Cu(111) surface, a small e.e. in the gas phase, e.e.g, leads to an amplification of the e.e. on the surface, e.e.s, under equilibrium conditions. Adsorption-induced amplification of e.e. does not require a chiral surface. The dependence of e.e.s on e.e.g has been modelled successfully using a Langmuir-like adsorption isotherm that incorporates the formation of homochiral adsorbate clusters on the surface.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TPR spectra of D- and *L-Asp on the Cu(111) surface at saturation coverage.
Figure 2: Asp coverage ratios, θD/θ*L, on the achiral Cu(111) surface as a function of exposure time to D/*L-Asp mixtures with partial pressure ratios of PD/P*L = (1/2), 1 and 2.
Figure 3: Relationships between e.e.g of the Asp mixtures in the gas phase and the e.e.s in the adsorbed phase on an achiral Cu(111) surface under equilibrium adsorption conditions at 460 K.

Similar content being viewed by others

References

  1. Bonner, W. A. The origin and amplification of biomolecular chirality. Origins Life Evol. B. 21, 59–111 (1991).

    Article  CAS  Google Scholar 

  2. Bada, J. L. Biomolecules—origins of homochirality. Nature 374, 594–595 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Weissbuch, I., Leiserowitz, L. & Lahav, M. Stochastic ‘mirror symmetry breaking’ via self-assembly, reactivity and amplification of chirality: relevance to abiotic conditions. Top. Curr. Chem. 259, 123–165 (2005).

    Article  CAS  Google Scholar 

  4. Soai, K., Shibata, T., Morioka, H. & Choji, K. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378, 767–768 (1995).

    Article  CAS  Google Scholar 

  5. Soai, K. et al. D- and L-quartz-promoted highly enantioselective synthesis of a chiral organic compound. J. Am. Chem. Soc. 121, 11235–11236 (1999).

    Article  CAS  Google Scholar 

  6. Green, M. M. et al. Majority rules in the co-polymerization of mirror image isomers. J. Am. Chem. Soc. 117, 4181–4182 (1995).

    Article  CAS  Google Scholar 

  7. Viedma, C. Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 94, 065504 (2005).

    Article  PubMed  Google Scholar 

  8. Klussmann, M. et al. Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 441, 621–623 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Perry, R. H., Chunping, W., Nefliu, M. & Cooks, R. G. Serine sublimes with spontaneous chiral amplification. Chem. Commun. 1071–1073 (2007).

  10. Blackmond, D. G. & Klussmann, M. Spoilt for choice: assessing phase behavior models for the evolution of homochirality. Chem. Commun. 3990–3996 (2007).

  11. Mallat, T., Orglmeister, E. & Baiker, A. Asymmetric catalysis at chiral metal surfaces. Chem. Rev. 107, 4863–4890 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Gellman, A. J. et al. Superenantioselective chiral surface explosions. J. Am. Chem. Soc. 135, 19208–19214 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Mastai, Y. Enantioselective crystallization on nanochiral surfaces. Chem. Soc. Rev. 38, 772–780 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Yun, Y. & Gellman, A. J. Enantioselective separation on naturally chiral metal surfaces: D,L-aspartic acid on Cu(3,1,17)R&S surfaces. Angew. Chem. Int. Ed. 52, 3394–3397 (2013).

    Article  CAS  Google Scholar 

  15. Hazen, R. M., Filley, T. R. & Goodfriend, G. A. Selective adsorption of L- and D-amino acids on calcite: implications for biochemical homochirality. Proc. Natl Acad. Sci. USA 98, 5487–5490 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hazen, R. M. & Sholl, D. S. Chiral selection on inorganic crystalline surfaces. Nature Mater. 2, 367–374 (2003).

    Article  CAS  Google Scholar 

  17. Zaera, F. Chiral modification of solid surfaces: a molecular view. J. Phys. Chem. C 112, 16196–16203 (2008).

    Article  CAS  Google Scholar 

  18. Gellman, A. J. Chiral surfaces: accomplishments and challenges. ACS Nano 4, 5–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. McFadden, C. F., Cremer, P. S. & Gellman, A. J. Adsorption of chiral alcohols on “chiral” metal surfaces. Langmuir 12, 2483–2487 (1996).

    Article  CAS  Google Scholar 

  20. Horvath, J. D., Baker, L. & Gellman, A. J. Enantiospecific orientation of R-3-methylcyclohexanone on the chiral Cu{643}R&S surfaces. J. Phys. Chem. C 112, 7637–7643 (2008).

    Article  CAS  Google Scholar 

  21. Gladys, M. J. et al. Enantiospecific adsorption of alanine on the chiral Cu{531} surface. J. Phys. Chem. C 111, 8331–8336 (2007).

    Article  CAS  Google Scholar 

  22. Rampulla, D. M., Francis, A. J., Knight, K. S. & Gellman, A. J. Enantioselective surface chemistry of R-2-bromobutane on Cu(643)R&S and Cu(531)R&S. J. Phys. Chem. B 110, 10411–10420 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Horvath, J. D. & Gellman, A. J. Enantiospecific desorption of R- and S-propylene oxide from a chiral Cu(643) surface. J. Am. Chem. Soc. 123, 7953–7954 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Horvath, J. D. & Gellman, A. J. Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces. J. Am. Chem. Soc. 124, 2384–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, Y. & Gellman, A. J. Enantiospecific adsorption of (R)-3-methylcyclohexanone on naturally chiral surfaces vicinal to Cu(110). Top. Catal. 54, 1403–1413 (2011).

    Article  CAS  Google Scholar 

  26. Cheong, W. Y. & Gellman, A. J. Energetics of chiral imprinting of Cu(100) by lysine. J. Phys. Chem. C 115, 1031–1035 (2011).

    Article  CAS  Google Scholar 

  27. Lorenzo, M. O., Baddeley, C. J., Muryn, C. & Raval, R. Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404, 376–379 (2000).

    CAS  PubMed  Google Scholar 

  28. Ernst, K. H. Supramolecular chirality. Top. Curr. Chem. 265, 209–252 (2006).

    Article  CAS  Google Scholar 

  29. Barth, J. V. et al. Stereochemical effects in supramolecular self-assembly at surfaces: 1D versus 2D enantiomorphic ordering for PVBA and PEBA on Ag(111). J. Am. Chem. Soc. 124, 7991–8000 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Barlow, S. M. & Raval, R. Complex organic molecules at metal surfaces: bonding, organisation and chirality. Surf. Sci. Rep. 50, 201–341 (2003).

    Article  CAS  Google Scholar 

  31. Parschau, M., Romer, S. & Ernst, K. H. Induction of homochirality in achiral enantiomorphous monolayers. J. Am. Chem. Soc. 126, 15398–15399 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Haq, S., Liu, N., Humblot, V., Jansen, A. P. J. & Raval, R. Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. Nature Chem. 1, 409–414 (2009).

    Article  CAS  Google Scholar 

  33. Nanita, S. C., Takats, Z., Cooks, R. G., Myung, S. & Clemmer, D. E. Chiral enrichment of serine via formation, dissociation, and soft-landing of octameric cluster ions. J. Am. Soc. Mass Spectrom. 15, 1360–1365 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Nanita, S. C. & Cooks, R. G. Serine octamers: cluster formation, reactions, and implications for biomolecule homochirality. Angew. Chem. Int. Ed. 45, 554–569 (2006).

    Article  CAS  Google Scholar 

  35. Cundy, K. C. & Crooks, P. A. Unexpected phenomenon in the high performance liquid-chromatographic analysis of racemic 14C-labeled nicotine—separation of enantiomers in a totally achiral system. J. Chromatogr. 281, 17–33 (1983).

    Article  CAS  Google Scholar 

  36. Soloshonok, V. A. Remarkable amplification of the self-disproportionation of enantiomers on achiral-phase chromatography columns. Angew. Chem. Int. Ed. 45, 766–769 (2006).

    Article  CAS  Google Scholar 

  37. Soloshonok, V. A., Roussel, C., Kitagawa, O. & Sorochinsky, A. E. Self-disproportionation of enantiomers via achiral chromatography: a warning and an extra dimension in optical purifications. Chem. Soc. Rev. 41, 4180–4188 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Fletcher, S. P., Jagt, R. B. C. & Feringa, B. An astrophysically-relevant mechanism for amino acid enantiomer enrichment. Chem. Commun. 2578–2580 (2007).

  39. Mhatre, B. S. Super-Enantiospecific Autocatalytic Decomposition of Tartaric Acid and Aspartic Acid on Cu Surfaces PhD thesis, Carnegie Mellon Univ. (2013).

  40. Yun, Y., Wei, D., Sholl, D. S. & Gellman, A. J. Equilibrium adsorption of D- and L-alanine mixtures on naturally chiral Cu{3,1,17}R&S surfaces. J. Phys. Chem. C 118, 14957–14966 (2014).

    Article  CAS  Google Scholar 

  41. Roth, C., Parschau, M. & Ernst, K. H. Chiral reconstruction of a metal surface by adsorption of racemic malic acid. ChemPhysChem 12, 1572–1577 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Lawton, T. J. et al. Long range chiral imprinting of Cu(110) by tartaric acid. J. Phys. Chem. C 117, 22290–22297 (2013).

    Article  CAS  Google Scholar 

  43. Chen, Q. & Richardson, N. V. Surface facetting induced by adsorbates. Progr. Surf. Sci. 73, 59–77 (2003).

    Article  CAS  Google Scholar 

  44. Mhatre, B. S. et al. A window on surface explosions: tartaric acid on Cu(110). J. Phys. Chem. C 117, 7577–7588 (2013).

    Article  CAS  Google Scholar 

  45. Zhao, X. Y., Zhao, R. G. & Yang, W. S. Scanning tunneling microscopy investigation of L-lysine adsorbed on Cu(001). Langmuir 16, 9812–9818 (2000).

    Article  CAS  Google Scholar 

  46. Kuhnle, A., Linderoth, T. R., Hammer, B. & Besenbacher, F. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature 415, 891–893 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Barlow, S. M. et al. Supramolecular assembly of strongly chemisorbed size- and shape-defined chiral clusters: S- and R-alanine on Cu(110). Langmuir 20, 7171–7176 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Schiffrin, A. et al. Self-assembly of L-methionine on Cu(111): steering chiral organization by substrate reactivity and thermal activation. J. Phys. Chem. C 113, 12101–12108 (2009).

    Article  CAS  Google Scholar 

  49. Humblot, V. et al. Characterization of two-dimensional chiral self-assemblies L- and D-methionine on Au(111). Langmuir 30, 203–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Mahapatra, M. et al. Formation of chiral self-assembled structures of amino acids on transition-metal surfaces: alanine on Pd(111). J. Phys. Chem. C 118, 6856–6865 (2014).

    Article  CAS  Google Scholar 

  51. Zhao, X. Y., Yan, H., Zhao, R. G. & Yang, W. S. Self-assembled structures of glycine on Cu(111). Langmuir 19, 809–813 (2003).

    Article  CAS  Google Scholar 

  52. Yitamben, E. N. et al. Tracking amino acids in chiral quantum corrals. J. Phys. Chem. C 117, 11757–11763 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the US Department of Energy through Grant No. DE-FG02-12ER16330. A.J.G. acknowledges the hospitality of the Fritz-Haber Institute during the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. made the initial observation of auto-amplification on a Cu{653} surface. A.J.G. and Y.Y. designed the experiments that demonstrated auto-amplification on the achiral Cu(111) surface. These were performed solely by Y.Y. A.J.G. and Y.Y. analysed the results and prepared the manuscript jointly.

Corresponding author

Correspondence to Andrew J. Gellman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, Y., Gellman, A. Adsorption-induced auto-amplification of enantiomeric excess on an achiral surface. Nature Chem 7, 520–525 (2015). https://doi.org/10.1038/nchem.2250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing