Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins

Abstract

Post-translational modification of the histone proteins in chromatin plays a central role in the epigenetic control of DNA-templated processes in eukaryotic cells. Developing methods that enable the structure of histones to be manipulated is, therefore, essential to understand the biochemical mechanisms that underlie genomic regulation. Here we present a synthetic biology method to engineer histones that bear site-specific modifications on cellular chromatin using protein trans-splicing (PTS). We genetically fused the N-terminal fragment of ultrafast split intein to the C terminus of histone H2B, which, on reaction with a complementary synthetic C intein, generated labelled histone. Using this approach, we incorporated various non-native chemical modifications into chromatin in vivo with temporal control. Furthermore, the time and concentration dependence of PTS performed in nucleo enabled us to examine differences in the accessibility of the euchromatin and heterochromatin regions of the epigenome. Finally, we used PTS to semisynthesize a native histone modification, H2BK120 ubiquitination, in isolated nuclei and showed that this can trigger downstream epigenetic crosstalk of H3K79 methylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modification of native chromatin using PTS.
Figure 2: Modification of histone H2B in native chromatin.
Figure 3: PTS as a function of chromatin state.
Figure 4: Synthesis of IntC–H2B–K120Ub (construct 6).
Figure 5: In nucleo semisynthesis of H2B–K120Ub and its effect on H3K79 methylation.

Similar content being viewed by others

References

  1. Badeaux, A. I. & Shi, Y. Emerging roles for chromatin as a signal integration and storage platform. Nature Rev. Mol. Cell Biol. 14, 211–224 (2013).

    Article  CAS  Google Scholar 

  2. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Sturm, D. et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nature Rev. Cancer 14, 92–107 (2014).

    Article  CAS  Google Scholar 

  4. Rodriguez-Paredes, M. & Esteller, M. Cancer epigenetics reaches mainstream oncology. Nature Med. 17, 330–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  6. Allis, C. D. & Muir, T. W. Spreading chromatin into chemical biology. ChemBioChem 12, 264–279 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Fierz, B. & Muir, T. W. Chromatin as an expansive canvas for chemical biology. Nature Chem. Biol. 8, 417–427 (2012).

    Article  CAS  Google Scholar 

  8. Jiang, H. et al. Regulation of transcription by the MLL2 complex and MLL complex-associated AKAP95. Nature Struct. Mol. Biol. 20, 1156–1163 (2013).

    Article  CAS  Google Scholar 

  9. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nature Biotechnol. 28, 817–825 (2010).

    Article  CAS  Google Scholar 

  10. Cole, P. A. Chemical probes for histone-modifying enzymes. Nature Chem. Biol. 4, 590–597 (2008).

    Article  CAS  Google Scholar 

  11. Iwasaki, W. et al. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains. Biochemistry 50, 7822–7832 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Shah, N. H., Dann, G. P., Vila-Perello, M., Liu, Z. & Muir, T. W. Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J. Am. Chem. Soc. 134, 11338–11341 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wood, D. W. & Camarero, J. A. Intein applications: from protein purification and labeling to metabolic control methods. J. Biol. Chem. 289, 14512–14519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shah, N. H. & Muir, T. W. Inteins: nature's gift to protein chemists. Chem. Sci. 5, 446–461 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Vila-Perello, M. et al. Streamlined expressed protein ligation using split inteins. J. Am. Chem. Soc. 135, 286–292 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Wadia, J. S., Stan, R. V. & Dowdy, S. F. Transducible TAT–HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Med. 10, 310–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Giriat, I. & Muir, T. W. Protein semi-synthesis in living cells. J. Am. Chem. Soc. 125, 7180–7181 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Wombacher, R. et al. Live-cell super-resolution imaging with trimethoprim conjugates. Nature Methods 7, 717–719 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Klein, T. et al. Live-cell dSTORM with SNAP-tag fusion proteins. Nature Methods 8, 7–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Pellois, J. P., Hahn, M. E. & Muir, T. W. Simultaneous triggering of protein activity and fluorescence. J. Am. Chem. Soc. 126, 7170–7171 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Borra, R., Dong, D., Elnagar, A. Y., Woldemariam, G. A. & Camarero, J. A. In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J. Am. Chem. Soc. 134, 6344–6353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Woodcock, C. L. & Ghosh, R. P. Chromatin higher-order structure and dynamics. Cold Spring Harb. Perspect. Biol. 2, a000596 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salina, D. et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Voigt, P. & Reinberg, D. Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. ChemBioChem 12, 236–252 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Fuchs, G. & Oren, M. Writing and reading H2B monoubiquitylation. Biochim. Biophys. Acta 1839, 694–701 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Hodgins, R. R., Ellison, K. S. & Ellison, M. J. Expression of a ubiquitin derivative that conjugates to protein irreversibly produces phenotypes consistent with a ubiquitin deficiency. J. Biol. Chem. 267, 8807–8812 (1992).

    CAS  PubMed  Google Scholar 

  28. McGinty, R. K., Kim, J., Chatterjee, C., Roeder, R. G. & Muir, T. W. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453, 812–816 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McGinty, R. K. et al. Structure–activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B. ACS Chem. Biol. 4, 958–968 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilkins, B. J. et al. A cascade of histone modifications induces chromatin condensation in mitosis. Science 343, 77–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Matsushita, N. et al. A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol. Cell 19, 841–847 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Vlaming, H. et al. Flexibility in crosstalk between H2B ubiquitination and H3 methylation in vivo. EMBO Rep. 15, 1220–1221 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  33. Schwarze, S. R., Hruska, K. A. & Dowdy, S. F. Protein transduction: unrestricted delivery into all cells? Trends Cell Biol. 10, 290–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. van den Berg, A. & Dowdy, S. F. Protein transduction domain delivery of therapeutic macromolecules. Curr. Opin. Biotechnol. 22, 888–893 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Erazo-Oliveras, A. et al. Protein delivery into live cells by incubation with an endosomolytic agent. Nature Methods 11, 861–867 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnol. 33, 73–80 (2015).

    Article  CAS  Google Scholar 

  37. Musselman, C. A., Lalonde, M. E., Cote, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nature Struct. Mol. Biol. 19, 1218–1227 (2012).

    Article  CAS  Google Scholar 

  38. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsompana, M. & Buck, M. J. Chromatin accessibility: a window into the genome. Epigenetics Chromatin 7, 33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Crawford, G. E. et al. DNase-CHiP: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nature Methods 3, 503–509 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Crawford, G. E. et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16, 123–131 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kanda, T., Sullivan, K. F. & Wahl, G. M. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Sugita, T. et al. Improved cytosolic translocation and tumor-killing activity of Tat–shepherdin conjugates mediated by co-treatment with Tat-fused endosome-disruptive HA2 peptide. Biochem. Biophys. Res. Commun. 363, 1027–1032 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the current and former members of the Muir laboratory for many valuable discussions. We further thank D. H. Perlman (Princeton Proteomics and Mass Spectrometry Core, Princeton University) for the mass spectrometry data and G. Laevsky (Confocal Core Facility, Princeton University) for help with the microscopy experiments. We also thank W. Wang, D. Storton and J. Miller (Microarray Facility, Princeton University) for help with the qPCR and RNA-seq experiments. Finally, we thank S. Josefowicz, C. Li and D. Allis (Rockefeller University) for help with the ChIP assays. This research was supported by the US National Institutes of Health (grants R37-GM086868 and R01 GM107047).

Author information

Authors and Affiliations

Authors

Contributions

Y.D., M.V-P. and T.W.M. conceived and designed the research. Y.D., M.V-P. and S.V. prepared the reagents and performed the experiments. Y.D. and T.W.M. wrote the manuscript.

Corresponding author

Correspondence to Tom W. Muir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11947 kb)

Supplementary information

Supplementary Movie S1 (GIF 2517 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, Y., Vila-Perelló, M., Verma, S. et al. Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nature Chem 7, 394–402 (2015). https://doi.org/10.1038/nchem.2224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing