Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iterative design of a helically folded aromatic oligoamide sequence for the selective encapsulation of fructose

Abstract

The ab initio design of synthetic molecular receptors for a specific biomolecular guest remains an elusive objective, particularly for targets such as monosaccharides, which have very close structural analogues. Here we report a powerful approach to produce receptors with very high selectivity for specific monosaccharides and, as a demonstration, we develop a foldamer that selectively encapsulates fructose. The approach uses an iterative design process that exploits the modular structure of folded synthetic oligomer sequences in conjunction with molecular modelling and structural characterization to inform subsequent refinements. Starting from a first-principles design taking size, shape and hydrogen-bonding ability into account and using the high predictability of aromatic oligoamide foldamer conformations and their propensity to crystallize, a sequence that binds to β-D-fructopyranose in organic solvents with atomic-scale complementarity was obtained in just a few iterative modifications. This scheme, which mimics the adaptable construction of biopolymers from a limited number of monomer units, provides a general protocol for the development of selective receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of structure-based iterative evolution of a foldamer sequence.
Figure 2: Host–guest components and assembly.
Figure 3: Spectroscopic assessment of host–guest association.
Figure 4: Crystal structures of complexes of first-generation capsule P-1.
Figure 5: Sugar-binding modes with first-generation capsule P-1.
Figure 6: Iterative receptor design.

Similar content being viewed by others

References

  1. Lokey, R. S. & Iverson, B. L. Synthetic molecules that fold into a pleated secondary structure in solution. Nature 375, 303–305 (1995).

    Article  CAS  Google Scholar 

  2. Appella, D. H. et al. Residue-based control of helix shape in β-peptide oligomers. Nature 387, 381–384 (1997).

    Article  CAS  Google Scholar 

  3. Nelson, J. C., Saven, J. G., Moore, J. S. & Wolynes, P. G. Solvophobically driven folding of nonbiological oligomers. Science 277, 1793–1796 (1997).

    Article  CAS  Google Scholar 

  4. Hamuro, Y., Geib, S. J. & Hamilton, A. D. Oligoanthranilamides. Non-peptide subunits that show formation of specific secondary structure. J. Am. Chem. Soc. 118, 7529–7541 (1996).

    Article  CAS  Google Scholar 

  5. Cuccia, L. A., Lehn, J-M., Homo, J-C. & Schmutz, M. Encoded helical self-organization and self-assembly into helical fibers of an oligoheterocyclic pyridine–pyridazine molecular strand. Angew. Chem. Int. Ed. 39, 233–237 (2000).

    Article  CAS  Google Scholar 

  6. Berl, V., Huc, I., Khoury, R., Krische, M. & Lehn, J-M. Interconversion of single and double helices formed from synthetic molecular strands. Nature 407, 720–723 (2000).

    Article  CAS  Google Scholar 

  7. Zhu, J. A. et al. New class of folding oligomers: crescent oligoamides. J. Am. Chem. Soc. 122, 4219–4220 (2000).

    Article  CAS  Google Scholar 

  8. Guichard, G., Huc, I. Synthetic foldamers. Chem. Commun. 47, 5933–5941 (2011).

    Article  CAS  Google Scholar 

  9. White, S., Szewczyk, J. W., Turner, J. M., Baird, E. E. & Dervan, P. B. Recognition of the four Watson–Crick base pairs in the DNA minor groove by synthetic ligands. Nature 391, 468–471 (1998).

    Article  CAS  Google Scholar 

  10. Davis, A. P. Sticking to sugars. Nature 464, 169–170 (2010).

    Article  CAS  Google Scholar 

  11. Kubik, S. Synthetic lectins. Angew. Chem. Int. Ed. 48, 1722–1725 (2009).

    Article  CAS  Google Scholar 

  12. Huc, I. Aromatic oligoamide foldamers. Eur. J. Org. Chem. 1, 17–29 (2004).

    Article  Google Scholar 

  13. Zhang, D-W., Zhao, X., Hou, J-L. & Li, Z-T. Aromatic amide foldamers: structures, properties, and functions. Chem. Rev. 112, 5271–5316 (2012).

    Article  CAS  Google Scholar 

  14. Klein, E., Ferrand, Y., Barwell, N. P. & Davis, A. P. Solvent effects in carbohydrate binding by synthetic receptors: implications for the role of water in natural carbohydrate recognition. Angew. Chem. Int. Ed. 47, 2693–2696 (2008).

    Article  CAS  Google Scholar 

  15. Ferrand, Y., Crump, M. P. & Davis, A. P. A synthetic lectin analog for biomimetic disaccharide recognition. Science 318, 619–622 (2007).

    Article  CAS  Google Scholar 

  16. Ferrand, Y. et al. A synthetic lectin for O-linked β-N-acetylglucosamine. Angew. Chem. Int. Ed. 48, 1775–1779 (2009).

    Article  CAS  Google Scholar 

  17. James, T. D., Sandanayake, K. R. A. S. & Shinkai, S. Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 374, 345–347 (1994).

    Article  Google Scholar 

  18. James, T. D., Phillips, M. D. & Shinkai, S. Boronic Acids in Saccharide Recognition (RSC Publishing, 2006).

  19. Davis, A. P. & Wareham, R. S. Carbohydrate recognition through noncovalent interactions: a challenge for biomimetic and supramolecular chemistry. Angew. Chem. Int. Ed. 38, 2978–2996 (1999).

    Article  CAS  Google Scholar 

  20. Walker, D. B., Joshi, G. & Davis, A. P. Progress in biomimetic carbohydrate recognition. Cell. Mol. Life Sci. 66, 3177–3191 (2009).

    Article  CAS  Google Scholar 

  21. Kobayashi, K., Asakawa, Y., Kato, Y. & Aoyama, Y. Complexation of hydrophobic sugars and nucleosides in water with tetrasulfonate derivatives of resorcinol cyclic tetramer having a polyhydroxy aromatic cavity importance of guest–host CH–π interaction. J. Am. Chem. Soc. 114, 10307–10313 (1992).

    Article  CAS  Google Scholar 

  22. Das, G. & Hamilton, A. D. Molecular recognition of carbohydrates: strong binding of alkyl glycosides by phosphonate derivatives. J. Am. Chem. Soc. 116, 11139–11140 (1994).

    Article  CAS  Google Scholar 

  23. Anderson, S., Neidlein, U., Gramlich, V. & Diederich, F. A new family of chiral binaphthyl-derived cyclophane receptors: complexation of pyranosides. Angew. Chem. Int. Ed. 34, 1596–1600 (1995).

    Article  CAS  Google Scholar 

  24. Davis, A. P. & Wareham, R. S. A tricyclic polyamide receptor for carbohydrates in organic media. Angew. Chem. Int. Ed. 37, 2270–2273 (1998).

    Article  Google Scholar 

  25. Bitta, J. & Kubik, S. Cyclic hexapeptides with free carboxylate groups as new receptors for monosaccharides. Org. Lett. 3, 2637–2640 (2001).

    Article  CAS  Google Scholar 

  26. Mazik, M., Cavga, H. & Jones, P. G. Molecular recognition of carbohydrates with artificial receptors: mimicking the binding motifs found in the crystal structures of protein–carbohydrate complexes. J. Am. Chem. Soc. 127, 9045–9052 (2005).

    Article  CAS  Google Scholar 

  27. Ardá, A. et al. A chiral pyrrolic tripodal receptor enantioselectively recognizes β-mannose and β-mannosides. Chem. Eur. J. 16, 414–418 (2010).

    Article  Google Scholar 

  28. Inouye, M., Waki, M. & Abe, H. Saccharide-dependent induction of chiral helicity in achiral synthetic hydrogen-bonding oligomers. J. Am. Chem. Soc. 126, 2022–2027 (2004).

    Article  CAS  Google Scholar 

  29. Hou, J-L. et al. Hydrogen bonded oligohydrazide foldamers and their recognition for saccharides. J. Am. Chem. Soc. 126, 12386–12394 (2004).

    Article  CAS  Google Scholar 

  30. Pal, A., Bérubé, M. & Hall, D. G. Design, synthesis, and screening of a library of peptidyl bis-boroxoles as low molecular weight receptors for complex oligosaccharides in water: identification of a receptor for the tumour marker TF-antigen. Angew. Chem. Int. Ed. 49, 1492–1495 (2010).

    Article  CAS  Google Scholar 

  31. Bao, C. et al. Converting sequences of aromatic amino acid monomers into functional three-dimensional structures: second-generation helical capsules. Angew. Chem. Int. Ed. 47, 4153–4156 (2008).

    Article  CAS  Google Scholar 

  32. Hua, Y., Liu, Y., Chen, C-H. & Flood, A. H. Hydrophobic collapse of foldamer capsules drives picomolar-level chloride binding in aqueous acetonitrile solutions. J. Am. Chem. Soc. 135, 14401–14412 (2013).

    Article  CAS  Google Scholar 

  33. Ajami, D. & Rebek, J. J. Compressed alkanes in reversible encapsulation complexes. Nature Chem. 1, 87–90 (2009).

    Article  CAS  Google Scholar 

  34. Sawada, T., Yoshizawa, M., Sato, S. & Fujita, M. Minimal nucleotide duplex formation in water through enclathration in self-assembled hosts. Nature Chem. 1, 53–56 (2009).

    Article  CAS  Google Scholar 

  35. Mugridge, J. S., Rudi van Eldik, A. Z., Bergman, R. G. & Raymond, K. N. Solvent and pressure effects on the motions of encapsulated guests: tuning the flexibility of a supramolecular host. J. Am Chem. Soc. 135, 4299–4306 (2013).

    Article  CAS  Google Scholar 

  36. Ferrand, Y. et al. Long-range effects on the capture and release of a chiral guest by a helical molecular capsule. J. Am. Chem. Soc. 134, 11282–11288 (2012).

    Article  CAS  Google Scholar 

  37. Qi, T., Deschrijver, T. & Huc, I. Large-scale and chromatography-free synthesis of an octameric quinoline-based aromatic amide helical foldamer. Nature Protoc. 8, 693–708 (2013).

    Article  Google Scholar 

  38. Lemieux, R. U. The origin of the specificity in the recognition of oligosaccharides by proteins. Chem. Soc. Rev. 18, 347–374 (1989).

    Article  CAS  Google Scholar 

  39. Cocinero, E. J. et al. Free fructose is conformationally locked. J. Am. Chem. Soc. 135, 2845–2852 (2013).

    Article  CAS  Google Scholar 

  40. Pentelute, B. L. et al. X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers. J. Am. Chem. Soc. 130, 9695–9701 (2008).

    Article  CAS  Google Scholar 

  41. Lautrette, G. et al. Structure elucidation of host–guest complexes of tartaric and malic acid by quasi-racemic crystallography. Angew. Chem. Int. Ed. 52, 11517–11520 (2013).

    Article  CAS  Google Scholar 

  42. Çarcabal, P. et al. Hydrogen bonding and cooperativity in isolated and hydrated sugars: mannose, galactose, glucose, and lactose. J. Am. Chem. Soc. 127, 11414–11425 (2005).

    Article  Google Scholar 

  43. Doores, K. J. et al. A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc. Natl Acad. Sci. USA 107, 17107–17112 (2010).

    Article  CAS  Google Scholar 

  44. Mecozzi, S. & Rebek J. Jr The 55% solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998).

    Article  CAS  Google Scholar 

  45. Tanatani, A., Mio, M. J. & Moore, J. S. Chain length-dependent affinity of helical foldamers for a rodlike guest. J. Am. Chem. Soc. 123, 1792–1793 (2001).

    Article  CAS  Google Scholar 

  46. Singleton, M. L. et al. Synthesis of 1,8-diazaanthracenes as building blocks for internally functionalized aromatic oligoamide foldamers. J. Org. Chem. 79, 2115–2122 (2014).

    Article  CAS  Google Scholar 

  47. Corbett, P. T., Otto, S. & Sanders, J. K. M. Correlation between host–guest binding and host amplification in simulated dynamic combinatorial libraries. Chem. Eur. J. 10, 3139–3143 (2004).

    Article  CAS  Google Scholar 

  48. Laskowski, R. A. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 13, 323–330 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche (project no. ANR-09-BLAN-0082-01, post-doctoral fellowship to N.C.), by the Conseil Interprofessionnel du Vin de Bordeaux (predoctoral fellowship to G.L.) and by the European Research Council under the European Union's Seventh Framework Programme (grant agreement no. ERC-2012-AdG-320892, post-doctoral fellowship to G.L.). The authors thank A. Kendhale and C. Blum for preliminary investigations on the preparation of ‘H’ monomers, the IR-RMN-THC Fr3050 CNRS for high-field NMR time, J-L. Ferrer for beamtime and help during data collection on FIP-BM30A at the European Synchrotron Radiation Facility and P. Nowak (University of Gröningen) for calculations using the DCLSim software.

Author information

Authors and Affiliations

Authors

Contributions

N.C. and G.L. synthesized all new compounds. N.C., Y.F., G.L. and C.D.M. carried out solution studies. B.K. collected X-ray data and solved the crystal structures. M.L. performed modelling studies. I.H., D.D. and Y.F. designed the study. I.H., Y.F. and C.D.M. co-wrote the manuscript. All authors discussed the results and commented on the manuscript. N.C. and Y.F. contributed equally to this work.

Corresponding author

Correspondence to Ivan Huc.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10488 kb)

Supplementary movie

Supplementary movie (MP4 16206 kb)

Supplementary information

Crystallographic data for host-guest complex 1β-7a (CIF 3372 kb)

Supplementary information

Crystallographic data for host-guest complex 1α-8a (CIF 6224 kb)

Supplementary information

Crystallographic data for host-guest complex 1β-9a (CIF 12211 kb)

Supplementary information

Crystallographic data for host-guest complex 1α-13a (CIF 7306 kb)

Supplementary information

Crystallographic data for host-guest complex 3β-7a (CIF 3543 kb)

Supplementary information

Crystallographic data for host-guest complex 5β-7a (CIF 3072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandramouli, N., Ferrand, Y., Lautrette, G. et al. Iterative design of a helically folded aromatic oligoamide sequence for the selective encapsulation of fructose. Nature Chem 7, 334–341 (2015). https://doi.org/10.1038/nchem.2195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing