Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coulomb explosion during the early stages of the reaction of alkali metals with water

Subjects

Abstract

Alkali metals can react explosively with water and it is textbook knowledge that this vigorous behaviour results from heat release, steam formation and ignition of the hydrogen gas that is produced. Here we suggest that the initial process enabling the alkali metal explosion in water is, however, of a completely different nature. High-speed camera imaging of liquid drops of a sodium/potassium alloy in water reveals submillisecond formation of metal spikes that protrude from the surface of the drop. Molecular dynamics simulations demonstrate that on immersion in water there is an almost immediate release of electrons from the metal surface. The system thus quickly reaches the Rayleigh instability limit, which leads to a ‘coulomb explosion’ of the alkali metal drop. Consequently, a new metal surface in contact with water is formed, which explains why the reaction does not become self-quenched by its products, but can rather lead to explosive behaviour.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-speed camera images of a Na/K alloy drop versus a water drop impacting on water.
Figure 2: High-speed camera images of a Na/K alloy drop impacting on liquid ammonia.
Figure 3: AIMD simulations of the time evolution of the radius of gyration (green) and the average charge on a sodium atom (blue) of a medium-sized sodium cluster in water.
Figure 4: Time evolution of the radius of gyration of a large sodium cluster surrounded by water for different values of the initial separation of the positive and negative charges.

Similar content being viewed by others

References

  1. Hutton, A. T. Dramatic demonstration for a large audience – the formation of hydroxyl ions in the reaction of sodium with water. J. Chem. Educ. 58, 506 (1981).

    Article  CAS  Google Scholar 

  2. Carnevali, S., Proust, C. & Soucille, M. Unsteady aspects of sodium–water–air reaction. Chem. Eng. Res. Design 91, 633–639 (2013).

    Article  CAS  Google Scholar 

  3. Krebs, R. E. The History and Use of Our Earth's Chemical Elements (Greenwood Press, 2006).

    Google Scholar 

  4. Commander, J. C. An explosive hazard analysis of the eutectic solution of NaK and KO2 . Nucl. Sci. Abstracts 32, 21922 (1975).

    Google Scholar 

  5. Mukasyan, A. S., Khina, B. B., Reeves, R. V. & Son, S. F. Mechanical activation and gasless explosion: nanostructural aspects. Chem. Eng. J. 174, 677–686 (2011).

    Article  CAS  Google Scholar 

  6. Bernardin, J. D. & Mudawar, I. A cavity activation and bubble growth model of the Leidenfrost point. J. Heat Transfer 124, 864–874 (2002).

    Article  CAS  Google Scholar 

  7. Grubelnik, A., Meyer, V. R., Buetzer, P. & Schoenenberger, U. W. Potassium metal is explosive – do not use it! J. Chem. Educ. 85, 634 (2008).

    Article  CAS  Google Scholar 

  8. Alchagirov, B. B. et al. Surface tension and adsorption of components in the sodium–potassium alloy systems: effective liquid metal coolants promising in nuclear and space power engineering. Inorg. Mater. Appl. Res. 2, 461–467 (2011).

    Article  Google Scholar 

  9. Buchanan, D. J. & Dullforc, T. A. Mechanism for vapor explosions. Nature 245, 32–34 (1973).

    Article  CAS  Google Scholar 

  10. Gibson, G. E. & Argo, W. L. The absorption spectra of the blue solutions of certain alkali and alkaline earth metals in liquid ammonia and in methylamine. J. Am. Chem. Soc. 40, 1327–1361 (1918).

    Article  Google Scholar 

  11. Hart, E. J. Research potentials of hydrated electron. Acc. Chem. Res. 2, 161–167 (1969).

    Article  CAS  Google Scholar 

  12. Christensen, H. & Sehested, K. The hydrated electron and its reactions at high temperatures. J. Phys. Chem. 90, 186–190 (1986).

    Article  CAS  Google Scholar 

  13. Vilchiz, V. H., Kloepfer, J. A., Germaine, A. C., Lenchenkov, V. A. & Bradforth, S. E. Map for the relaxation dynamics of hot photoelectrons injected into liquid water via anion threshold photodetachment and above threshold solvent ionization. J. Phys. Chem. A 105, 1711–1723 (2001).

    Article  CAS  Google Scholar 

  14. Elkins, M. H., Williams, H. L., Shreve, A. T. & Neumark, D. M. Relaxation mechanism of the hydrated electron. Science 342, 1496–1499 (2013).

    Article  CAS  Google Scholar 

  15. Mundy, C. J., Hutter, J. & Parrinello, M. Microsolvation and chemical reactivity of sodium and water clusters. J. Am. Chem. Soc. 122, 4837–4838 (2000).

    Article  CAS  Google Scholar 

  16. Mercuri, F., Mundy, C. J. & Parrinello, M. Formation of a reactive intermediate in molecular beam chemistry of sodium and water. J. Phys. Chem. A 105, 8423–8427 (2001).

    Article  CAS  Google Scholar 

  17. de la Mora, J. F. On the outcome of the coulombic fission of a charged isolated drop. J. Colloid Interface Sci. 178, 209–218 (1996).

    Article  CAS  Google Scholar 

  18. Duft, D., Achtzehn, T., Muller, R., Huber, B. A. & Leisner, T. Coulomb fission – Rayleigh jets from levitated microdroplets. Nature 421, 128–128 (2003).

    Article  CAS  Google Scholar 

  19. Echt, O., Scheier, P. & Mark, T. D. Multiply charged clusters. C. R. Phys. 3, 353–364 (2002).

    Article  CAS  Google Scholar 

  20. Last, I., Levy, Y. & Jortner, J. Beyond the Rayleigh instability limit for multicharged finite systems: from fission to coulomb explosion. Proc. Natl Acad. Sci. USA 99, 9107–9112 (2002).

    Article  CAS  Google Scholar 

  21. Rayleigh, L. On the equilibrium of liquid conducting masses charged with electricity. Phil. Mag. 14, 184–186 (1882).

    Article  Google Scholar 

  22. Lebedev, R. V. Measurements of interphase surface-tension of sodium–potassium alloys. Izv. Vus. Fiz. 15, 155–158 (1972).

    CAS  Google Scholar 

  23. Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 134, 064111 (2011).

    Article  Google Scholar 

  24. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  Google Scholar 

  25. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  CAS  Google Scholar 

  26. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  27. Lee, C. T., Yang, W. T. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  28. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  29. Genovese, L., Deutsch, T., Neelov, A., Goedecker, S. & Beylkin, G. Efficient solution of Poisson's equation with free boundary conditions. J. Chem. Phys. 125, 074105 (2006).

    Article  Google Scholar 

  30. VandeVondele, J. et al. QUICKSTEP Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  31. Jorgensen, W. L. OPLS and OPLS-AA Parameters for Organic Molecules, Ions, and Nucleic Acids (Yale Univ. 1997).

    Google Scholar 

  32. Bhansali, A. P., Bayazitoglu, Y. & Maruyama, S. Molecular dynamics simulation of an evaporating sodium droplet. Int. J. Thermal Sci. 38, 66–74 (1999).

    Article  CAS  Google Scholar 

  33. Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  CAS  Google Scholar 

  34. Kastenholtz, M. A. & Hunenberger, P. H. Computation of methodology-independent solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation. J. Chem. Phys. 124, 224501 (2006).

    Article  Google Scholar 

  35. Krizek, T. et al. Electrophoretic mobilities of neutral analytes and electroosmotic flow markers in aqueous solutions of Hofmeister salts. Electrophoresis 35, 617–624 (2014).

    Article  CAS  Google Scholar 

  36. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor. Comput. 4, 435–447 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Jiráček for boldly making his chemical laboratory available to us for the initial experiments in liquid ammonia. P.J. acknowledges the Czech Science Foundation (Grant P208/12/G016) for support and thanks the Academy of Sciences for the Praemium Academiae award. S.B. acknowledges support from the Deutsche Forschungsgemeinschaft (Grants BA 2176/3–2 and BA 2176/4–1). P.E.M. acknowledges support from the viewers of his YouTube popular science channel.

Author information

Authors and Affiliations

Authors

Contributions

P.E.M., S.B. and P.J. designed and analysed the experiments. P.E.M., V.V., T.B. and S.B. performed the experiments. F.U. and P.J. designed and analysed the simulations and F.U. executed the calculations. P.J. wrote the paper with critical feedback from all the co-authors.

Corresponding author

Correspondence to Pavel Jungwirth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 344 kb)

Supplementary information

Supplementary Movie 1 (MP4 7385 kb)

Supplementary information

Supplementary Movie 2 (AVI 63560 kb)

Supplementary information

Supplementary Movie 3 (AVI 20534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mason, P., Uhlig, F., Vaněk, V. et al. Coulomb explosion during the early stages of the reaction of alkali metals with water. Nature Chem 7, 250–254 (2015). https://doi.org/10.1038/nchem.2161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing