Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic enantioselective synthesis of indanes by a cation-directed 5-endo-trig cyclization

A Corrigendum to this article was published on 19 February 2016

An Erratum to this article was published on 24 March 2015

This article has been updated

Abstract

5-Endo-trig cyclizations are generally considered to be kinetically unfavourable, as described by Baldwin's rules. Consequently, observation of this mode of reaction under kinetic control is rare. This is usually ascribed to challenges in achieving appropriate approach trajectories for orbital overlap in the transition state. Here, we describe a highly enantio- and diastereoselective route to complex indanes bearing all-carbon quaternary stereogenic centres via a 5-endo-trig cyclization catalysed by a chiral ammonium salt. Through computation, the preference for the formally disfavoured 5-endo-trig Michael reaction over the formally favoured 5-exo-trig Dieckmann reaction is shown to result from thermodynamic contributions to the innate selectivity of the nucleophilic group, which outweigh the importance of the approach trajectory as embodied by Baldwin's rules. Our experimental and theoretical findings demonstrate that geometric and stereoelectronic constraints may not be decisive in the observed outcome of irreversible ring-closing reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of five-membered carbocycles.
Figure 2: Chemoselective derivatization of indane products.
Figure 3: Mechanistic possibilities and stereochemical model.
Figure 4: Computed free-energy profiles for ring closure.

Similar content being viewed by others

Change history

  • 19 February 2015

    In the version of this Article originally published Robert S. Paton (robert.paton@chem.ox.ac.uk) should have been acknowledged as a corresponding author.

  • 25 January 2016

    In the version of this Article originally published, the absolute stereochemistry of compounds in Fig.2 and Table 3 was reversed. Additionally, the absolute stereochemistry was reversed in the Markush product structure shown in the reaction scheme at the top of Table 2. These structures have been corrected in the online versions of the Article.

References

  1. Watson, M. P. & Jacobsen, E. N. Asymmetric intramolecular arylcyanation of unactivated olefins via C–CN bond activation. J. Am. Chem. Soc. 130, 12594–12595 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Arp, F. O. & Fu, G. C. Catalytic enantioselective Negishi reactions of racemic secondary benzylic halides. J. Am. Chem. Soc. 127, 10482–10483 (2005).

    CAS  PubMed  Google Scholar 

  3. Albicker, M. & Cramer, N. Enantioselective palladium-catalyzed direct arylations at ambient temperature: access to indanes with quaternary stereocenters. Angew. Chem. Int. Ed. 48, 9139–9142 (2009).

    CAS  Google Scholar 

  4. Martin, N., Pierre, C., Davi, M., Jazzar, R. & Baudoin, O. Diastereo- and enantioselective intramolecular C(sp3)‒H arylation for the synthesis of fused cyclopentanes. Chem. Eur. J. 18, 4480–4484 (2012).

    CAS  PubMed  Google Scholar 

  5. Yang, J. W., Hechavarria Fonseca, M. T. & List, B. Catalytic asymmetric reductive Michael cyclization. J. Am. Chem. Soc. 127, 15036–15037 (2005).

    CAS  PubMed  Google Scholar 

  6. Belmessieri, D., Morrill, L. C., Simal, C., Slawin, A. M. Z. & Smith, A. D. Organocatalytic functionalization of carboxylic acids: isothiourea-catalyzed asymmetric intra- and intermolecular Michael addition–lactonizations. J. Am. Chem. Soc. 133, 2714–2720 (2011).

    CAS  Google Scholar 

  7. Phillips, E. M., Wadamoto, M., Chan, A. & Scheidt, K. A. A highly enantioselective intramolecular Michael reaction catalyzed by N-heterocyclic carbenes. Angew. Chem. Int. Ed. 46, 3107–3110 (2007).

    CAS  Google Scholar 

  8. Li, Y., Wang, X-Q., Zheng, C. & You, S-L. Highly enantioselective intramolecular Michael reactions by d-camphor-derived triazolium salts. Chem. Commun. 5823–5825 (2009).

  9. Biswas, A., Sarkar, S. D., Fröhlich, R. & Studer, A. Highly stereoselective synthesis of 1,2,3-trisubstituted indanes via oxidative N-heterocyclic carbene-catalyzed cascades. Org. Lett. 13, 4966–4969 (2011).

    CAS  PubMed  Google Scholar 

  10. Chua, P. J. et al. Highly stereoselective synthesis of indanes with four stereogenic centers via sequential Michael reaction and [3+2] cycloaddition. Chem. Commun. 46, 7611–7613 (2010).

    CAS  Google Scholar 

  11. Baldwin, J. E. Rules for ring closure. J. Chem. Soc. Chem. Commun. 734–736 (1976).

  12. Baldwin, J. E. et al. 5-Endo-trigonal reactions: a disfavoured ring closure. J. Chem. Soc. Chem. Commun. 736–738 (1976).

  13. Baldwin, J. E. & Kruse, L. I. Rules for ring closure. Stereoelectronic control in the endocyclic alkylation of ketone enolates. J. Chem. Soc. Chem. Commun. 233–235 (1977).

  14. Alabugin, I. V. & Gilmore, K. Finding the right path: Baldwin ‘Rules for Ring Closure’ and stereoelectronic control of cyclizations. Chem. Commun. 49, 11246–11250 (2013).

    CAS  Google Scholar 

  15. Shoppee, C. W. & Henderson, G. N. Electrocyclisation of the 1,5-diphenyl-1,4-dienyl anion. J. Chem. Soc. Chem. Commun. 561–562 (1974).

  16. Williams, D. R., Reeves, J. T., Nag, P. P., Pitcock, W. H. Jr & Baik, M-H. Studies of the generation and pericyclic behavior of cyclic pentadienyl carbanions. Alkylation reactions as an efficient route to functionalized cis-bicyclo[3.3.0]octenes. J. Am. Chem. Soc. 128, 12339–12348 (2006).

    CAS  PubMed  Google Scholar 

  17. Maciver, E. E., Thompson, S. & Smith, M. D. Catalytic asymmetric 6π electrocyclization: enantioselective synthesis of functionalized indolines. Angew. Chem. Int. Ed. 48, 9979–9982 (2009).

    CAS  Google Scholar 

  18. Maciver, E. E., Knipe, P. C., Cridland, A. P., Thompson, A. L. & Smith, M. D. Catalytic enantioselective electrocyclic cascades. Chem. Sci. 3, 537–540 (2012).

    CAS  Google Scholar 

  19. Li, M., Woods, P. A. & Smith, M. D. Cation-directed enantioselective synthesis of quaternary-substituted indolenines. Chem. Sci. 4, 2907–2911 (2013).

    CAS  Google Scholar 

  20. Smith, A. B. III, Kürti, L. & Davulcu, A. H. A new modular indole synthesis. Construction of the highly strained CDEF parent tetracycle of Nodulisporic acids A and B. Org. Lett. 8, 2167–2170 (2006).

    CAS  PubMed  Google Scholar 

  21. Shirakawa, S. & Maruoka, K. Recent developments in asymmetric phase-transfer reactions. Angew. Chem. Int. Ed. 52, 4312–4348 (2013).

    CAS  Google Scholar 

  22. Lygo, B., Allbutt, B., Beaumont, D. J., Butt, U. & Gilks, J. A. R. Synthesis and evaluation of chiral dibenzazepinium halide phase-transfer catalysts. Synlett 675–680 (2009).

  23. Kitamura, M., Shirakawa, S. & Maruoka, K. Powerful chiral phase-transfer catalysts for the asymmetric synthesis of α-alkyl- and α,α-dialkyl-α-amino acids. Angew. Chem. Int. Ed. 44, 1549–1551 (2005).

    CAS  Google Scholar 

  24. Ooi, T., Takeuchi, M., Kameda, M. & Maruoka, K. Practical catalytic enantioselective synthesis of α,α-dialkyl-α-amino acids by chiral phase-transfer catalysis. J. Am. Chem. Soc. 122, 5228–5229 (2000).

    CAS  Google Scholar 

  25. Ooi, T., Kameda, M. & Maruoka, K. Design of N-spiro C2-symmetric chiral quaternary ammonium bromides as novel chiral phase-transfer catalysts: synthesis and application to practical asymmetric synthesis of α-amino acids. J. Am. Chem. Soc. 125, 5139–5151(2003).

    CAS  Google Scholar 

  26. Caddick, S., Judd, D. B., Lewis, A. K. de K., Reich, M. T. & Williams, M. R. V. A generic approach for the catalytic reduction of nitriles. Tetrahedron 59, 5417–5423 (2003).

    CAS  Google Scholar 

  27. Woodward, R. B. & Hoffmann, R. The Conservation of Orbital Symmetry (Verlag Chemie, 1970).

    Google Scholar 

  28. Müller, S. & List, B. A catalytic asymmetric 6π electrocyclization: enantioselective synthesis of 2-pyrazolines. Angew. Chem. Int. Ed. 48, 9975–9978 (2009).

    Google Scholar 

  29. Das, A., Volla, C. M. R., Atodiresei, I., Bettray, W. & Rueping, M. Asymmetric ion pair catalysis of 6π electrocyclizations: Brønsted acid catalyzed enantioselective synthesis of optically active 1,4-dihydropyridazines. Angew. Chem. Int. Ed. 52, 8008–8011 (2013).

    CAS  Google Scholar 

  30. Bishop, L. M., Barbarow, J. E., Bergman, R. G. & Trauner, D. Catalysis of 6π electrocyclizations. Angew. Chem. Int. Ed. 47, 8100–8103 (2008).

    CAS  Google Scholar 

  31. Kempf, D. J., Wilson, K. D. & Beak, P. β′ Metalation of α,β-unsaturated tertiary amides. J. Org. Chem. 47, 1610–1612 (1982).

    CAS  Google Scholar 

  32. Auvray, P., Knochel, P. & Normant, J. F. 5-Endo-trigonal ring closures of unsaturated sulfones. Tetrahedron Lett. 26, 4455–4458 (1985).

    CAS  Google Scholar 

  33. Padwa, A. & Yeske, P. E. [3+2] Cyclization–elimination route to cyclopentenyl sulfones using (phenylsulfonyl)-1,2-propadiene. J. Org. Chem. 56, 6386–6390 (1991).

    CAS  Google Scholar 

  34. Clayden, J., Watson, D. W., Helliwell, M. & Chambers, M. β-Lactams or γ-lactams by 4-exo-trig or 5-endo-trig anionic cyclisation of lithiated acrylamide derivatives. Chem. Commun. 2582–2583 (2003).

  35. Asaoka, M. et al. Formation of 3-pyrrolin-2-ones via 5-endo-trig cyclization. Heterocycles 63, 1009–1012 (2004).

    Google Scholar 

  36. Ichikawa, J., Sakoda, K. & Wada, Y. The 5-endo-trig cyclization of gem-difluoroolefins with sp3 carbon nucleophiles: synthesis of 1-fluorocyclopentenes. Chem. Lett. 31, 282–283 (2002)

    Google Scholar 

  37. Anderson, J. C. & Davies, E. A. Diastereoselective synthesis of substituted prolines via 5-endo-trig cyclisations of aza-[2,3]-Wittig sigmatropic rearrangement products. Tetrahedron 66, 6300–6308 (2010).

    CAS  Google Scholar 

  38. Motto, J. M. et al. Synthetic scope, computational chemistry and mechanism of a base induced 5-endo cyclization of benzyl alkynyl sulfides. Tetrahedron 67, 1002–1010 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Colonna, S., Hiemstra, H. & Wynberg, H. Asymmetric induction in the base-catalysed Michael addition of nitromethane to chalcone. J. Chem. Soc. Chem. Commun. 238–239 (1978).

  40. Conn, R. S. E., Lovell, A. V., Karady, S. & Weinstock, L. M. Chiral Michael addition: methyl vinyl ketone addition catalyzed by Cinchona alkaloid derivatives. J. Org. Chem. 51, 4710–4711 (1986).

    CAS  Google Scholar 

  41. Ooi, T., Fujioka, S. & Maruoka, K. Highly enantioselective conjugate addition of nitroalkanes to alkylidenemalonates using efficient phase-transfer catalysis of N-spiro chiral ammonium bromides. J. Am. Chem. Soc. 126, 11790–11791 (2004).

    CAS  PubMed  Google Scholar 

  42. Lygo, B., Allbutt, B. & Kirton, E. H. M. Asymmetric Michael addition of glycine imines via quaternary ammonium ion catalysis. Tetrahedron Lett. 46, 4461–4464 (2005).

    CAS  Google Scholar 

  43. Alabugin, I. V. & Manoharan, M. Thermodynamic and strain effects in the competition between 5-exo-dig and 6-endo-dig cyclizations of vinyl and aryl radicals. J. Am. Chem. Soc. 127, 12583–12954 (2005).

    CAS  PubMed  Google Scholar 

  44. Mayr, H., Breugst, M. & Ofial, A. R. Farewell to the HSAB treatment of ambident reactivity. Angew. Chem. Int. Ed. 50, 6470 (2011).

    CAS  Google Scholar 

  45. Breugst, M., Zipse, H., Guthrie, J. P. & Mayr, H. Marcus analysis of ambident reactivity. Angew. Chem. Int. Ed. 49, 5165–5169 (2010).

    CAS  Google Scholar 

  46. Alabugin, I. V., Gilmore, K. & Manoharan, M. Rules for anionic and radical ring closure of alkynes. J. Am. Chem. Soc. 133, 12608–12623 (2011).

    CAS  PubMed  Google Scholar 

  47. Alabugin, I. V. & Manoharan, M. 5-Endo-dig radical cyclizations: ‘the poor cousins’ of the radical cyclizations family. J. Am. Chem. Soc. 127, 9534–9545 (2005).

    CAS  PubMed  Google Scholar 

  48. Ross, J. A., Seiders, R. P. & Lemal, D. M. An extraordinarily facile sulfoxide automerization. J. Am. Chem. Soc. 98, 4325–4327 (1976).

    CAS  Google Scholar 

  49. Huisgen, R. 1,5,-Electrocyclizations—an important principle of heterocyclic chemistry. Angew. Chem. Int. Ed. 19, 947–973 (1980).

    Google Scholar 

  50. Gilmore, K., Manoharan, M., Wu, J. I., Schleyer, P. v. R. & Alabugin, I. V. Aromatic transition states in nonpericyclic reactions: anionic 5-endo cyclizations are aborted sigmatropic shifts. J. Am. Chem. Soc. 134, 10584–10594 (2012).

    CAS  PubMed  Google Scholar 

  51. Alabugin, I. V. & Gilmore, K. Cyclizations of alkynes: revisiting Baldwin's rules for ring closure. Chem. Rev. 111, 6513–6556 (2011).

    PubMed  Google Scholar 

  52. Pirkle, W. H. On the minimum requirements for chiral recognition. Chirality 9, 103 (1997).

    CAS  Google Scholar 

  53. Reetz, M. T., Hütte, S. & Goddard, R. Tetrabutylammonium salts of CH-acidic carbonyl compounds: real carbanions or supramolecules? J. Am. Chem. Soc. 115, 9339–9340 (1993).

    CAS  Google Scholar 

  54. Cannizarro, C. E. & Houk, K. N. Magnitudes and chemical consequences of R3N+–C–H···O=C hydrogen bonding. J. Am. Chem. Soc. 124, 7163–7169 (2002).

    Google Scholar 

  55. Ammer, J. et al. Ion-pairing of phosphonium salts in solution: C–H···Halogen and C–H···π hydrogen bonds. Chem. Eur. J. 19, 14612–14630 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The European Research Council provided financial support under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 259056. The authors thank Pfizer (D. Fradet), Novartis (T. Hunt), the EPSRC (to C.P.J. and K.E.J.), the Cambridge Trusts (to A.K.) and R. Driver for crystallography. The Ministry of Education and Science of Ukraine financed internships (S.I.O. and T.S.) at Oxford. The authors acknowledge Johnson-Matthey for a loan of Pd(PPh3)4. The authors acknowledge the use of the EPSRC UK National Service for Computational Chemistry Software (NSCCS) at Imperial College London and the Discovery Environment (XSEDE) supported by the National Science Foundation (grant no. OCI-1053575) in carrying out this work.

Author information

Authors and Affiliations

Authors

Contributions

M.D.S. conceived and designed the study. C.P.J. and A.K. performed the synthetic experiments. R.S.P. conceived and designed the computational study. T.S., K.E.J. and S.I.O. performed the computational study. M.D.S., C.P.J. and R.S.P. co-wrote the paper.

Corresponding authors

Correspondence to Robert S. Paton or Martin D. Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 25055 kb)

Supplementary information

Crystallographic data for compound 16 (CIF 27 kb)

Supplementary information

Crystallographic data for compound 17 (CIF 43 kb)

Supplementary information

Crystallographic data for compound 28 (CIF 28 kb)

Supplementary information

Crystallographic data for compound anti-4 (CIF 23 kb)

Supplementary information

DFT optimized non-planar enolate 38 [(Z)-1,3-dimethoxy-2-(2-(3-methoxy-3-oxo-1-phenylprop-1-en-2-yl)phenyl)-1,3-dioxopropan-2-ide] (PDB 4 kb)

Supplementary information

DFT optimized Dieckmann product 39 [(Z)-3-benzylidene-2-methoxy-1,1-bis(methoxycarbonyl)-2,3-dihydro-1H-inden-2-olate] (PDB 4 kb)

Supplementary information

DFT optimized 40 [1,3,3-tris(methoxycarbonyl)-2-phenyl-2,3-dihydro-1H-inden-1-ide] (PDB 4 kb)

Supplementary information

DFT optimized planar enolate 41 [(Z)-2-methoxy-1-(2-(3-methoxy-3-oxo-1-phenylprop-1-en-2-yl)phenyl)-2-oxoethan-1-ide] (PDB 4 kb)

Supplementary information

DFT optimized TS: chiral ammonium phase-transfer catalysed (S)-1,3,3-tris(methoxycarbonyl)-2-phenyl-2,3-dihydro-1H-inden-1-ide (PDB 14 kb)

Supplementary information

DFT optimized TS: chiral ammonium phase-transfer catalysed (R)-1,3,3-tris(methoxycarbonyl)-2-phenyl-2,3-dihydro-1H-inden-1-ide (PDB 14 kb)

Supplementary information

DFT optimization: dimethyl (Z)-2-(1-methoxy-1-(l1-oxidanyl)-3-phenylallyl)malonate (PDB 3 kb)

Supplementary information

DFT optimization: (Z)-1,5-dimethoxy-4-(methoxycarbonyl)-5-oxo-3-phenylpent-1-en-1-olate (PDB 3 kb)

Supplementary information

DFT optimization: (Z)-3,5-dimethoxy-5-oxo-1-phenylpent-1-en-3-olate (PDB 3 kb)

Supplementary information

DFT optimization: (Z)-1,5-dimethoxy-5-oxo-3-phenylpent-1-en-1-olate (PDB 3 kb)

Supplementary information

DFT optimized TS 1 [(Z)-3-benzylidene-2-methoxy-1,1-bis(methoxycarbonyl)-2,3-dihydro-1H-inden-2-olate] (PDB 4 kb)

Supplementary information

DFT optimized TS 2 [1,3,3-tris(methoxycarbonyl)-2-phenyl-2,3-dihydro-1H-inden-1-ide] (PDB 4 kb)

Supplementary information

DFT optimized TS 3 [(Z)-1-benzylidene-2-methoxy-3-(methoxycarbonyl)-2,3-dihydro-1H-inden-2-olate] (PDB 4 kb)

Supplementary information

DFT optimized TS 4 [1,3-bis(methoxycarbonyl)-2-phenyl-2,3-dihydro-1H-inden-1-ide] (PDB 4 kb)

Supplementary information

DFT optimized TS: cyclization of cyclopentanide (PDB 1 kb)

Supplementary information

DFT optimized TS: cyclization of cyclopent-2-en-1-ide (PDB 1 kb)

Supplementary information

DFT optimized TS: cyclization of 2,3-dihydro-1H-inden-1-ide (PDB 1 kb)

Supplementary information

DFT optimized cis -43 [(2S,3S)-1,3-bis(methoxycarbonyl)-2-phenyl-2,3-dihydro-1H-inden-1-ide] (PDB 4 kb)

Supplementary information

DFT optimized trans -42 [(2R,3S)-1-((Z)-benzylidene)-2-methoxy-3-(methoxycarbonyl)-2,3-dihydro-1H-inden-2-olate] (PDB 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnston, C., Kothari, A., Sergeieva, T. et al. Catalytic enantioselective synthesis of indanes by a cation-directed 5-endo-trig cyclization. Nature Chem 7, 171–177 (2015). https://doi.org/10.1038/nchem.2150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing