Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Concerted proton-coupled electron transfer from a metal-hydride complex

Abstract

Metal hydrides are key intermediates in the catalytic reduction of protons and CO2 as well as in the oxidation of H2. In these reactions, electrons and protons are transferred to or from separate acceptors or donors in bidirectional proton-coupled electron transfer (PCET) steps. The mechanistic interpretation of PCET reactions of metal hydrides has focused on the stepwise transfer of electrons and protons. A concerted transfer may, however, occur with a lower reaction barrier and therefore proceed at higher catalytic rates. Here we investigate the feasibility of such a reaction by studying the oxidation–deprotonation reactions of a tungsten hydride complex. The rate dependence on the driving force for both electron transfer and proton transfer—employing different combinations of oxidants and bases—was used to establish experimentally the concerted, bidirectional PCET of a metal-hydride species. Consideration of the findings presented here in future catalyst designs may lead to more-efficient catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and the possible PCET mechanisms discussed for the oxidation of W–H.
Figure 2: Cyclic voltammograms of W–H and pyridine at different scan rates.
Figure 3: Marcus plot of the observed rate constant (ln(kET)) versus driving force for ETs from W–H to the four oxidants in the absence of added base.
Figure 4: Absorbance changes during stopped-flow oxidation of W–H by [Fe(dmbpy)3]3+ used to extract kinetic data.
Figure 5: Marcus plot of the rate constant ln(kCEP) versus ΔG0PCET for the PCET reaction between W–H and [Fe(MeObpy)3]3+ (black squares) or [Fe(dmbpy)3]3+ (open circles) and 7.5 equiv. base.

Similar content being viewed by others

References

  1. Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    Article  CAS  Google Scholar 

  2. Reece, S. Y. & Nocera, D. G. Proton-coupled electron transfer in biology: results from synergistic studies in natural and model systems. Annu. Rev. Biochem. 78, 673–699 (2009).

    Article  CAS  Google Scholar 

  3. Hammes-Schiffer, S. & Stuchebrukhov, A. A. Theory of coupled electron and proton transfer reactions. Chem. Rev. 110, 6939–6960 (2010).

    Article  CAS  Google Scholar 

  4. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  5. Hammes-Schiffer, S. Comparison of hydride, hydrogen atom, and proton-coupled electron transfer reactions. ChemPhysChem 3, 33–42 (2002).

    Article  CAS  Google Scholar 

  6. Hammes-Schiffer, S. Proton-coupled electron transfer: classification scheme and guide to theoretical methods. Energy Environ. Sci. 5, 7696–7703 (2012).

    Article  CAS  Google Scholar 

  7. Small, Y. A., DuBois, D. L., Fujita, E. & Muckerman, J. T. Proton management as a design principle for hydrogenase-inspired catalysts. Energy Environ. Sci. 4, 3008–3020 (2011).

    Article  CAS  Google Scholar 

  8. Schneider, J., Jia, H., Muckerman, J. T. & Fujita, E. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem. Soc. Rev. 41, 2036–2051 (2012).

    Article  CAS  Google Scholar 

  9. Gloaguen, F. & Rauchfuss, T. B. Small molecule mimics of hydrogenases: hydrides and redox. Chem. Soc. Rev. 38, 100–108 (2009).

    Article  CAS  Google Scholar 

  10. DuBois, D. L. Development of molecular electrocatalysts for energy storage. Inorg. Chem. 53, 3935–3960 (2014).

    Article  CAS  Google Scholar 

  11. Tschierlei, S., Ott, S. & Lomoth, R. Spectroscopically characterized intermediates of catalytic H2 formation by [FeFe] hydrogenase models. Energy Environ. Sci. 4, 2340–2352 (2011).

    Article  CAS  Google Scholar 

  12. Warren, J. J., Tronic, T. A. & Mayer, J. M. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110, 6961–7001 (2010).

    Article  CAS  Google Scholar 

  13. Costentin, C., Robert, M., Savéant, J-M. & Tard, C. Breaking bonds with electrons and protons. Models and examples. Acc. Chem. Res. 47, 271–280 (2014).

    Article  CAS  Google Scholar 

  14. Hammarström, L. & Styring, S. Proton-coupled electron transfer of tyrosines in photosystem II and model systems for artificial photosynthesis: the role of a redox-active link between catalyst and photosensitizer. Energy Environ. Sci. 4, 2379–2388 (2011).

    Article  Google Scholar 

  15. Johannissen, L. O., Irebo, T., Sjödin, M., Johansson, O. & Hammarström, L. The kinetic effect of internal hydrogen bonds on proton-coupled electron transfer from phenols: a theoretical analysis with modeling of experimental data. J. Phys. Chem. B 113, 16214–16225 (2009).

    Article  CAS  Google Scholar 

  16. Markle, T. F., Rhile, I. J. & Mayer, J. M. Kinetic effects of increased proton transfer distance on proton-coupled oxidations of phenol–amines. J. Am. Chem. Soc. 133, 17341–17352 (2011).

    Article  CAS  Google Scholar 

  17. Belkova, N. V., Shubina, E. S. & Epstein, L. M. Diverse world of unconventional hydrogen bonds. Acc. Chem. Res. 38, 624–631 (2005).

    Article  CAS  Google Scholar 

  18. Besora, M., Lledós, A. & Maseras, F. Protonation of transition-metal hydrides: a not so simple process. Chem. Soc. Rev. 38, 957–966 (2009).

    Article  CAS  Google Scholar 

  19. Levina, V. A. et al. Neutral transition metal hydrides as acids in hydrogen bonding and proton transfer: media polarity and specific solvation effects. J. Am. Chem. Soc. 132, 11234–11246 (2010).

    Article  CAS  Google Scholar 

  20. Creutz, C., Chou, M. H., Hou, H. & Muckerman, J. T. Hydride ion transfer from ruthenium(II) complexes in water: kinetics and mechanism. Inorg. Chem. 49, 9809–9822 (2010).

    Article  CAS  Google Scholar 

  21. Fernandez, L. E., Horvath, S. & Hammes-Schiffer, S. Theoretical analysis of the sequential proton-coupled electron transfer mechanisms for H2 oxidation and production pathways catalyzed by nickel molecular electrocatalysts. J. Phys. Chem. C 116, 3171–3180 (2012).

    Article  CAS  Google Scholar 

  22. Fernandez, L. E., Horvath, S. & Hammes-Schiffer, S. Theoretical design of molecular electrocatalysts with flexible pendant amines for hydrogen production and oxidation. J. Phys. Chem. Lett. 4, 542–546 (2013).

    Article  CAS  Google Scholar 

  23. Moore, E. J., Sullivan, J. M. & Norton, J. R. Kinetic and thermodynamic acidity of hydrido transition-metal complexes. 3. Thermodynamic acidity of common mononuclear carbonyl hydrides. J. Am. Chem. Soc. 108, 2257–2263 (1986).

    Article  CAS  Google Scholar 

  24. Edidin, R. T., Sullivan, J. M. & Norton, J. R. Kinetic and thermodynamic acidity of hydrido transition-metal complexes. 4. Kinetic acidities toward aniline and their use in identifying proton-transfer mechanisms. J. Am. Chem. Soc. 109, 3945–3953 (1987).

    Article  CAS  Google Scholar 

  25. Tilset, M. & Parker, V. D. Solution homolytic bond dissociation energies of organotransition-metal hydrides. J. Am. Chem. Soc. 111, 6711–6717 (1989).

    Article  CAS  Google Scholar 

  26. Ryan, O. B., Tilset, M. & Parker, V. D. Chemical and electrochemical oxidation of group 6 cyclopentadienylmetal hydrides. First estimates of 17-electron metal-hydride cation-radical thermodynamic acidities and their decomposition of 17-electron neutral radicals. J. Am. Chem. Soc. 112, 2618–2626 (1990).

    Article  CAS  Google Scholar 

  27. Waidmann, C. R. et al. Using combinations of oxidants and bases as PCET reactants: thermochemical and practical considerations. Energy Environ. Sci. 5, 7771–7780 (2012).

    Article  CAS  Google Scholar 

  28. Marcus, R. A. & Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta Bioenerg. 811, 265–322 (1985).

    Article  CAS  Google Scholar 

  29. Irebo, T., Zhang, M-T., Markle, T. F., Scott, A. M. & Hammarström, L. Spanning four mechanistic regions of intramolecular proton-coupled electron transfer in a Ru(bpy)32+–tyrosine complex. J. Am. Chem. Soc. 134, 16247–16254 (2012).

    Article  CAS  Google Scholar 

  30. Zhang, M-T. & Hammarström, L. Proton-coupled electron transfer from tryptophan: a concerted mechanism with water as proton acceptor. J. Am. Chem. Soc. 133, 8806–8809 (2011).

    Article  CAS  Google Scholar 

  31. Kadish, K. M., Lacombe, D. A. & Anderson, J. E. Electrochemistry of molybdenum and tungsten cyclopentadienyl carbonyl complexes, [M(CO)3Cp]2, [M(CO)3Cp]+, [M(CO)3Cp], and M(CO)3Cp where M = Mo and W. Inorg. Chem. 25, 2246–2250 (1986).

    Article  CAS  Google Scholar 

  32. Kaljurand, I. et al. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: unification of different basicity scales. J. Org. Chem. 70, 1019–1028 (2005).

    Article  CAS  Google Scholar 

  33. Savéant, J-M. Elements of Molecular and Biomolecular Electrochemistry (Wiley-VCH, 2006).

    Book  Google Scholar 

  34. Rudolph, M. Digital simulations on unequally spaced grids. J. Electroanal. Chem. 543, 23–39 (2003).

    Article  CAS  Google Scholar 

  35. Mabrouk, P. A. & Wrighton, M. S. Resonance Raman spectroscopy of the lowest excited state of derivatives of tris(2,2′-bipyridine)ruthenium(II): substituent effects on electron localization in mixed-ligand complexes. Inorg. Chem. 25, 526–531 (1986).

    Article  CAS  Google Scholar 

  36. Prasad, R. & Scaife, D. B. Electro-oxidation and electro-reduction of some iron (II), cobalt(II) and nickel(II) polypyridyl complexes in acetonitrile. J. Electroanal. Chem. Interfacial Electrochem. 84, 373–386 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.B. acknowledges T. F. Markle and M. Mirmohades for fruitful discussions. The authors are grateful to S. Glover for input regarding revision of the text. This work was supported by The Swedish Research Council, The Knut and Alice Wallenberg Foundation and The Swedish Energy Agency, as well as the Agence Nationale de la Recherche (ANR, BLANC SIMI9/0926-1, ‘TechBioPhyp’), the Centre National de la Recherche Scientifique and the Université de Bretagne Occidentale. Correspondence and requests for materials should be addressed to L.H.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and L.H. conceived and designed the experiments, M.B. and R.S. performed the experiments, M.B. and L.H. analysed the data, L.H. and S.O. had the global idea and directed the project, F.G. and L.H. supervised the project and the experiments and M.B., F.G., L.H. and S.O. co-wrote the paper.

Corresponding author

Correspondence to Leif Hammarström.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourrez, M., Steinmetz, R., Ott, S. et al. Concerted proton-coupled electron transfer from a metal-hydride complex. Nature Chem 7, 140–145 (2015). https://doi.org/10.1038/nchem.2157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing