Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative self-assembly of a purely organic three-dimensional catenane in water

Abstract

Self-assembly by means of coordinative bond formation has opened up opportunities for the high-yield synthesis of molecules with complex topologies. However, the preparation of purely covalent molecular architectures in aqueous media has remained a challenging task. Here, we present the preparation of a three-dimensional catenane through a self-assembly process that relies on the formation of dynamic hydrazone linkages in an acidic aqueous medium. The quantitative synthesis process and the mechanically interlocked structure of the resulting catenane were established by NMR spectroscopy, mass spectrometry, X-ray crystallography and HPLC studies. In addition, the labile hydrazone linkages of the individual [2]catenane components may be ‘locked’ by increasing the pH of the solution, yielding a relatively kinetically stable molecule. The present study thus details a simple approach to the creation and control of complex molecular architectures under reaction conditions that mimic biological milieux.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural formulae of precursors A13+, H1 and the [2]catenane C6+.
Figure 2: Partial 1H NMR spectra (400 MHz, D2O, 298 K) of the [2]catenane C6+ and the corresponding starting materials A13+·3Cl and H1.
Figure 3: Side view of the core structure of C6+ obtained from single-crystal X-ray diffraction analysis of C6+·6Cl.
Figure 4: ESI-MS of [2]catenane C6+·6CF3CO2.
Figure 5: Reversed-phase HPLC analysis of the [2]catenane formation reaction in acidic water.
Figure 6: ESI-MS analyses of aqueous solutions of [2]catenane C6+ containing different quantities of DMSO.

Similar content being viewed by others

References

  1. Hudson, B. & Vinograd, J. Catenated circular DNA molecules in HeLa cell mitochondria. Nature 216, 647–652 (1967).

    Article  CAS  Google Scholar 

  2. Clayton, D. A. & Vinograd, J. Circular dimer and catenate forms of mitochondrial DNA in human leukaemic leucocytes. Nature 216, 652–657 (1967).

    Article  CAS  Google Scholar 

  3. Duda, R. L. Protein chainmail: catenanted protein in viral capsids. Cell 94, 55–60 (1998).

    Article  CAS  Google Scholar 

  4. Rosengren, K. J. et al. Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J. Am. Chem. Soc. 125, 12464–12474 (2003).

    Article  CAS  Google Scholar 

  5. Takusagawa, F. & Kamitori, S. A real knot in protein. J. Am. Chem. Soc. 118, 8945–8946 (1996).

    Article  CAS  Google Scholar 

  6. Mallam, A. L., Morris, E. R. & Jackson, S. E. Exploring knotting mechanisms in protein folding. Proc. Natl Acad. Sci. USA 105, 18740–18745 (2008).

    Article  CAS  Google Scholar 

  7. Amabilino, D. B. & Stoddart, J. F. Interlocked and intertwined structures and superstructures. Chem. Rev. 95, 2725–2828 (1995).

    Article  CAS  Google Scholar 

  8. Dietrich-Buchecker, C. O. & Sauvage, J. P. Une nouvelle famille de molecules: les metallo-catenanes. Tetrahedron Lett. 24, 5095–5098 (1983).

    Article  CAS  Google Scholar 

  9. Lehn, J. Supramolecular chemistry. Science 260, 1762–1763 (1993).

    Article  CAS  Google Scholar 

  10. Fyfe, M. C. T. & Stoddart, J. F. Synthetic supramolecular chemistry. Acc. Chem. Res. 30, 393–401 (1997).

    Article  CAS  Google Scholar 

  11. Sun, Q. F. et al. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation. Science 328, 1144–1147 (2010).

    Article  CAS  Google Scholar 

  12. Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).

    Article  CAS  Google Scholar 

  13. Pentecost, C. D. et al. A molecular Solomon link. Angew. Chem. Int. Ed. 46, 218–222 (2007).

    Article  CAS  Google Scholar 

  14. Ronson, T. K. et al. Stellated polyhedral assembly of a topologically complicated Pd4L4 ‘Solomon cube’. Nature Chem. 1, 212–216 (2009).

    Article  CAS  Google Scholar 

  15. Ayme, J.-F. et al. Lanthanide template synthesis of a molecular trefoil knot. J. Am. Chem. Soc. 136, 13142–13145 (2014).

    Article  CAS  Google Scholar 

  16. Guo, J., Mayers, P. C., Breault, G. A. & Hunter, C. A. Synthesis of a molecular trefoil knot by folding and closing on an octahedral coordination template. Nature Chem. 2, 218–222 (2010).

    Article  CAS  Google Scholar 

  17. Ayme, J.-F. et al. A synthetic molecular pentafoil knot. Nature Chem. 4, 15–20 (2012).

    Article  CAS  Google Scholar 

  18. Leigh, D. A., Pritchard, R. G. & Stephens, A. J. A star of David catenane. Nature Chem. 6, 978–982 (2014).

    Article  CAS  Google Scholar 

  19. Fujita, M., Fujita, N., Ogura, K. & Yamaguchi, K. Spontaneous assembly of ten components into two interlocked, identical coordination cages. Nature 400, 52–55 (1999).

    Article  CAS  Google Scholar 

  20. Fukuda, M., Sekiya, R. & Kuroda, R. A quadruply stranded metallohelicate and its spontaneous dimerization into an interlocked metallohelicate. Angew. Chem. Int. Ed. 47, 706–710 (2008).

    Article  CAS  Google Scholar 

  21. Westcott, A., Fisher, J., Harding, L. P., Rizkallah, P. & Hardie, M. J. Self-assembly of a 3-D triply interlocked chiral [2]catenane. J. Am. Chem. Soc. 130, 2950–2951 (2008).

    Article  CAS  Google Scholar 

  22. Hasell, T. et al. Triply interlocked covalent organic cages. Nature Chem. 2, 750–755 (2010).

    Article  CAS  Google Scholar 

  23. Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. Angew. Chem. Int. Ed. 53, 5126–5130 (2014).

    CAS  Google Scholar 

  24. Ponnuswamy, N., Cougnon, F. B. L., Clough, J. M., Pantoş, G. D. & Sanders, J. K. M. Discovery of an organic trefoil knot. Science 338, 783–785 (2012).

    Article  CAS  Google Scholar 

  25. Wang, L., Vysotsky, M. O., Bogdan, A., Bolte, M. & Böhmer, V. Multiple catenanes derived from calix[4]arenes. Science 304, 1312–1314 (2004).

    Article  CAS  Google Scholar 

  26. Li, Y. et al. Sulfate anion templated synthesis of a triply interlocked capsule. Chem. Commun. 7134–7136 (2009).

  27. Orrillo, A. G., Escalante, A. M. & Furlan, R. L. E. Covalent double level dynamic combinatorial libraries: selectively addressable exchange processes. Chem. Commun. 5298–5300 (2008).

  28. Rodriguez-Docampo, Z. & Otto, S. Orthogonal or simultaneous use of disulfide and hydrazone exchange in dynamic covalent chemistry in aqueous solution. Chem. Commun. 5301–5303 (2008).

Download references

Acknowledgements

This work was supported by the US National Science Foundation (grant no. CHE-1402004) and the Robert A. Welch Foundation (F-1018). H.L. acknowledges support from a Chinese Government Award under the ‘Outstanding Self-Financed Student Abroad and the Thousand Young Talents Plan’. X.L. acknowledges support from the National Science Foundation (CHE-1506722) and the PREM Center for Interfaces (DMR-1205670).

Author information

Authors and Affiliations

Authors

Contributions

H.L. and J.L.S. conceived the project. H.L. and J.L.S. prepared the manuscript. H.L., H.Z. and A.D.L. synthesized the molecules studied in this work. V.M.L. solved the crystal structure. H.L., M.W. and X.L. were responsible for MS studies. H.L. performed the NMR spectroscopic and HPLC investigations.

Corresponding authors

Correspondence to Hao Li or Jonathan L. Sessler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 16421 kb)

Supplementary information

Crystallographic data for compound C6+.6Cl- (CIF 2075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, H., Lammer, A. et al. Quantitative self-assembly of a purely organic three-dimensional catenane in water. Nature Chem 7, 1003–1008 (2015). https://doi.org/10.1038/nchem.2392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing