Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids

Abstract

C s p 2 C s p 2 cross-coupling reactions between arylboronic acid and aryl halides are widely used in both academia and industry and are strategically important in the development of new agrochemicals and pharmaceuticals. C s p 2 C s p 3 cross-coupling reactions have been developed, but enantioselective variations are rare and simply retaining the stereochemistry is a problem. Here we report a highly enantioselective C s p 2 C s p 3 bond-forming method that couples arylboronic acids to racemic allyl chlorides. Both enantiomers of a cyclic chloride are converted into a single enantiomer of product via a dynamic kinetic asymmetric transformation. This Rh-catalysed method uses readily available and inexpensive building blocks and is mild and broadly applicable. For electron-deficient, electron-rich or ortho-substituted boronic acids better results are obtained with racemic allyl bromides. Oxygen substitution in the allyl halide is tolerated and the products can be functionalized to provide diverse building blocks. The approach fills a significant gap in the methods for catalytic asymmetric synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C–C bond-forming reactions, including this work.
Figure 2: Scale up and downstream reactivity of coupling products.

Similar content being viewed by others

References

  1. de Meijere, A., Brase, S. & Oestreich, M. Metal Catalyzed Cross-Coupling Reactions and More (Wiley, 2014).

    Book  Google Scholar 

  2. Cooper, T. W. J., Campbell, I. B. & MacDonald, S. J. F. Factors determining the selection of organic reactions by medicinal chemists and the use of these reactions in arrays (small focused libraries). Angew. Chem. Int. Ed. 49, 8082–8091 (2010).

    Article  CAS  Google Scholar 

  3. Nadin, A., Hattotuwagama, C. & Churcher, I. Lead-oriented synthesis: a new opportunity for synthetic chemistry. Angew. Chem. Int. Ed. 51, 1114–1122 (2012).

    Article  CAS  Google Scholar 

  4. Roughley, S. D. & Jordan, A. M. The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  Google Scholar 

  5. Lennox, A. J. J. & Lloyd-Jones, G. C. Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev. 43, 412–443 (2014).

    Article  CAS  Google Scholar 

  6. Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine (Wiley, 2006).

    Google Scholar 

  7. Howell, G. P. Asymmetric and diastereoselective conjugate addition reactions: C–C bond formation at large scale. Org. Process Res. Dev. 16, 1258–1272 (2012).

    Article  CAS  Google Scholar 

  8. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis: Supplement 2 (Springer, 2004).

    Google Scholar 

  9. Takaya, Y., Ogasawara, M. & Hayashi, T. Rhodium-catalyzed asymmetric 1,4-addition of aryl- and alkenylboronic acids to enones. J. Am. Chem. Soc. 3, 5579–5580 (1998).

    Article  Google Scholar 

  10. Hayashi, T. & Yamasaki, K. Rhodium-catalyzed asymmetric 1,4-addition and its related asymmetric reactions. Chem. Rev. 103, 2829–2844 (2003).

    Article  CAS  Google Scholar 

  11. Evans, P. A. Modern Rhodium-Catalyzed Organic Reactions (Wiley, 2005).

    Book  Google Scholar 

  12. Tsuji, J., Minami, I. & Shimizu, I. Allyation of carbonucleophiles with allylic carbonates under neutral conditions catalyzed by rhodium complexes. Tetrahedron Lett. 25, 5157–5160 (1984).

    Article  CAS  Google Scholar 

  13. Evans, P. A. & Kennedy, L. J. Enantiospecific and regioselective rhodium-catalyzed allylic alkylation: diastereoselective approach to quaternary carbon stereogenic centers. Org. Lett. 2, 2213–2215 (2000).

    Article  CAS  Google Scholar 

  14. Evans, P. A. & Leahy, D. K. Regioselective and enantiospecific rhodium-catalyzed allylic alkylation reactions using copper(I) enolates: synthesis of (–)-sugiresinol dimethyl ether. J. Am. Chem. Soc. 125, 8974–8975 (2003).

    Article  CAS  Google Scholar 

  15. Evans, P. A. & Uraguchi, D. Regio- and enantiospecific rhodium-catalyzed arylation of unsymmetrical fluorinated acyclic allylic carbonates: inversion of absolute configuration. J. Am. Chem. Soc. 125, 7158–7159 (2003).

    Article  CAS  Google Scholar 

  16. Hayashi, T., Okada, A., Suzuka, T. & Kawatsura, M. High enantioselectivity in rhodium-catalyzed allylic alkylation of 1-substituted 2-propenyl acetates. Org. Lett. 5, 1713–1715 (2003).

    Article  CAS  Google Scholar 

  17. Menard, F., Chapman, T. M., Dockendorff, C. & Lautens, M. Rhodium-catalyzed asymmetric allylic substitution with boronic acid nucleophiles. Org. Lett. 8, 4569–4572 (2006).

    Article  CAS  Google Scholar 

  18. Menard, F., Perez, D., Sustac Roman, D., Chapman, T. M. & Lautens, M. Ligand-controlled selectivity in the desymmetrization of meso cyclopenten-1,4-diols via rhodium(I)-catalyzed addition of arylboronic acids. J. Org. Chem. 75, 4056–4068 (2010).

    Article  CAS  Google Scholar 

  19. Lautens, M., Fagnou, K. & Hiebert, S. Transition metal-catalyzed enantioselective ring-opening reactions of oxabicyclic alkenes. Acc. Chem. Res. 36, 48–58 (2003).

    Article  CAS  Google Scholar 

  20. Trost, B. M. & Van Vranken, D. L. Asymmetric transition metal-catalyzed allylic alkylations. Chem. Rev. 96, 395–422 (1996).

    Article  CAS  Google Scholar 

  21. Lu, Z. & Ma, S. Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew. Chem. Int. Ed. 47, 258–297 (2008).

    Article  CAS  Google Scholar 

  22. Huerta, F. F., Minidis, A. B. E. & Bäckvall, J. Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem. Soc. Rev. 30, 321–331 (2001).

    Article  CAS  Google Scholar 

  23. Vedejs, E. & Jure, M. Efficiency in nonenzymatic kinetic resolution. Angew. Chem. Int. Ed. 44, 3974–4001 (2005).

    Article  CAS  Google Scholar 

  24. Trost, B. M. & Fandrick, D. R. Palladium-catalyzed dynamic kinetic asymmetric allylic alkylation with the DPPBA ligands. Aldrichim. Acta 40, 59–72 (2007).

    CAS  Google Scholar 

  25. Trost, B. M. & Thaisrivongs, D. A. Strategy for employing unstabilized nucleophiles in palladium-catalyzed asymmetric allylic alkylations. J. Am. Chem. Soc. 130, 14092–14093 (2008).

    Article  CAS  Google Scholar 

  26. Misale, A., Niyomchon, S., Luparia, M. & Maulide, N. Asymmetric palladium-catalyzed allylic alkylation using dialkylzinc reagents: a remarkable ligand effect. Angew. Chem. Int. Ed. 53, 7068–7073 (2014).

    Article  CAS  Google Scholar 

  27. Langlois, J.-B., Emery, D., Mareda, J. & Alexakis, A. Mechanistic identification and improvement of a direct enantioconvergent transformation in copper-catalyzed asymmetric allylic alkylation. Chem. Sci. 3, 1062–1069 (2012).

    Article  CAS  Google Scholar 

  28. Ito, H., Kunii, S. & Sawamura, M. Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization. Nature Chem. 2, 972–976 (2010).

    Article  CAS  Google Scholar 

  29. You, H., Rideau, E., Sidera, M. & Fletcher, S. P. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation. Nature 517, 351–355 (2015).

    Article  CAS  Google Scholar 

  30. Sidera, M. & Fletcher, S. P. Cu-catalyzed asymmetric addition of sp2-hybridized zirconium nucleophiles to racemic allyl bromides. Chem. Commun. 51, 5044–5047 (2015).

    Article  CAS  Google Scholar 

  31. Hamilton, J. Y., Sarlah, D. & Carreira, E. M. Iridium-catalyzed enantioselective allylic vinylation. J. Am. Chem. Soc. 135, 994–997 (2013).

    Article  CAS  Google Scholar 

  32. Yin, J. & Buchwald, S. L. A catalytic asymmetric Suzuki coupling for the synthesis of axially chiral biaryl compounds. J. Am. Chem. Soc. 122, 12051–12052 (2000).

    Article  CAS  Google Scholar 

  33. Baudoin, O. The asymmetric Suzuki coupling route to axially chiral biaryls. Eur. J. Org. Chem. 4223–4229 (2005).

    Article  Google Scholar 

  34. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  Google Scholar 

  35. Clemons, P. A. et al. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc. Natl Acad. Sci. USA 107, 18787–18792 (2010).

    Article  CAS  Google Scholar 

  36. Sakai, M., Hayashi, H. & Miyaura, N. Rhodium-catalyzed conjugate addition of aryl- or 1-alkenylboronic acids to enones. Organometallics 16, 4229–4231 (1997).

    Article  CAS  Google Scholar 

  37. Hayashi, T., Takahashi, M., Takaya, Y. & Ogasawara, M. Catalytic cycle of rhodium-catalyzed asymmetric 1, 4-addition of organoboronic acids. arylrhodium, oxa-π-allylrhodium, and hydroxorhodium intermediates. J. Am. Chem. Soc. 124, 5052–5058 (2002).

    Article  CAS  Google Scholar 

  38. Puchot, C. et al. Nonlinear effects in asymmetric synthesis. examples in asymmetric oxidations and aldolization reactions. J. Am. Chem. Soc. 108, 2353–2357 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Engineering and Physical Sciences Research Council (EP/H003711/1, a Career Acceleration Fellowship to S.F.).

Author information

Authors and Affiliations

Authors

Contributions

M.S. performed the experiments and S.F. guided the research. Both authors contributed to designing the experiments, analysing the data and writing the manuscript.

Corresponding author

Correspondence to Stephen P. Fletcher.

Ethics declarations

Competing interests

The authors are named as inventors on a UK patent application filed by Isis Innovation, which is the technology transfer arm of the University of Oxford.

Supplementary information

Supplementary information

Supplementary information (PDF 5920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidera, M., Fletcher, S. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids. Nature Chem 7, 935–939 (2015). https://doi.org/10.1038/nchem.2360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing