Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of enzyme catalysts caged in biomimetic gel-shell beads

Abstract

Natural evolution relies on the improvement of biological entities by rounds of diversification and selection. In the laboratory, directed evolution has emerged as a powerful tool for the development of new and improved biomolecules, but it is limited by the enormous workload and cost of screening sufficiently large combinatorial libraries. Here we describe the production of gel-shell beads (GSBs) with the help of a microfluidic device. These hydrogel beads are surrounded with a polyelectrolyte shell that encloses an enzyme, its encoding DNA and the fluorescent reaction product. Active clones in these man-made compartments can be identified readily by fluorescence-activated sorting at rates >107 GSBs per hour. We use this system to perform the directed evolution of a phosphotriesterase (a bioremediation catalyst) caged in GSBs and isolate a 20-fold faster mutant in less than one hour. We thus establish a practically undemanding method for ultrahigh-throughput screening that results in functional hybrid composites endowed with evolvable protein components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Directed evolution in biomimetic GSBs.
Figure 2: Model selections and directed evolution of active PTE in GSBs.
Figure 3: Triester hydrolysis by PTE and its evolved variants.

Similar content being viewed by others

References

  1. Retterer, S. T. & Simpson, M. L. Microscale and nanoscale compartments for biotechnology. Curr. Opin. Biotechnol. 23, 522–528 (2012).

    Article  CAS  Google Scholar 

  2. Walde, P. Building artificial cells and protocell models: experimental approaches with lipid vesicles. Bioessays 32, 296–303 (2010).

    Article  CAS  Google Scholar 

  3. Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    Article  CAS  Google Scholar 

  4. Donath, E., Sukhorukov, G. B., Caruso, F., Davis, S. A. & Mohwald, H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed. 37, 2202–2205 (1998).

    Article  CAS  Google Scholar 

  5. Stadler, B. et al. Polymer hydrogel capsules: en route toward synthetic cellular systems. Nanoscale 1, 68–73 (2009).

    Article  CAS  Google Scholar 

  6. Tong, W. J., Song, X. X. & Gao, C. Y. Layer-by-layer assembly of microcapsules and their biomedical applications. Chem. Soc. Rev. 41, 6103–6124 (2012).

    Article  CAS  Google Scholar 

  7. Peyratout, C. S. & Dahne, L. Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew. Chem. Int. Ed. 43, 3762–3783 (2004).

    Article  CAS  Google Scholar 

  8. Mak, W. C., Cheung, K. Y. & Trau, D. Diffusion controlled and temperature stable microcapsule reaction compartments for high-throughput microcapsule-PCR. Adv. Funct. Mater. 18, 2930–2937 (2008).

    Article  CAS  Google Scholar 

  9. Price, A. D., Zelikin, A. N., Wark, K. L. & Caruso, F. A biomolecular ‘ship-in-a-bottle’: continuous RNA synthesis within hollow polymer hydrogel assemblies. Adv. Mater. 22, 720–723 (2010).

    Article  CAS  Google Scholar 

  10. Baumler, H. & Georgieva, R. Coupled enzyme reactions in multicompartment microparticles. Biomacromolecules 11, 1480–1487 (2010).

    Article  Google Scholar 

  11. Pescador, P., Toca-Herrera, J. L., Donath, E. & Katakis, I. Efficiency of a bienzyme sequential reaction system immobilized on polyelectrolyte multilayer-coated colloids. Langmuir 24, 14108–14114 (2008).

    Article  CAS  Google Scholar 

  12. Turner, N. J. Directed evolution drives the next generation of biocatalysts. Nature Chem. Biol. 5, 567–573 (2009).

    Article  CAS  Google Scholar 

  13. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    Article  CAS  Google Scholar 

  14. Schaerli, Y. & Hollfelder, F. The potential of microfluidic water-in-oil droplets in experimental biology. Mol. Biosyst. 5, 1392–1404 (2009).

    Article  CAS  Google Scholar 

  15. Leemhuis, H., Stein, V., Griffiths, A. D. & Hollfelder, F. New genotype–phenotype linkages for directed evolution of functional proteins. Curr. Opin. Struct. Biol. 15, 472–478 (2005).

    Article  CAS  Google Scholar 

  16. Lin, H. & Cornish, V. W. Screening and selection methods for large-scale analysis of protein function. Angew. Chem. Int. Ed. 41, 4402–4425 (2002).

    Article  CAS  Google Scholar 

  17. Jäckel, C. & Hilvert, D. Biocatalysts by evolution. Curr. Opin. Biotechnol. 21, 753–759 (2010).

    Article  Google Scholar 

  18. Tracewell, C. A. & Arnold, F. H. Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr. Opin. Chem. Biol. 13, 3–9 (2009).

    Article  CAS  Google Scholar 

  19. Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed evolution. Nature Rev. Mol. Cell Biol. 10, 866–876 (2009).

    Article  CAS  Google Scholar 

  20. Yang, Y., Baker, J. A. & Ward, J. R. Decontamination of chemical warfare agents. Chem. Rev. 92, 1729–1743 (1992).

    Article  CAS  Google Scholar 

  21. Morales-Rojas, H. & Moss, R. A. Phosphorolytic reactivity of o-iodosylcarboxylates and related nucleophiles. Chem. Rev. 102, 2497–2521 (2002).

    Article  CAS  Google Scholar 

  22. Tawfik, D. S. & Griffiths, A. D. Man-made cell-like compartments for molecular evolution. Nature Biotechnol. 16, 652–656 (1998).

    Article  CAS  Google Scholar 

  23. Miller, O. J. et al. Directed evolution by in vitro compartmentalization. Nature Methods 3, 561–570 (2006).

    Article  CAS  Google Scholar 

  24. Huebner, A. et al. Quantitative detection of protein expression in single cells using droplet microfluidics. Chem. Commun. 1218–1220 (2007).

  25. Kintses, B. et al. Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem. Biol. 19, 1001–1009 (2012).

    Article  CAS  Google Scholar 

  26. Weaver, J. C., Bliss, J. G., Powell, K. T., Harrison, G. I. & Williams, G. B. Rapid clonal growth measurements at the single-cell level – gel microdroplets and flow-cytometry. Bio-Technology 9, 873–877 (1991).

    CAS  PubMed  Google Scholar 

  27. Dejugnat, C. & Sukhorukov, G. B. PH-responsive properties of hollow polyelectrolyte microcapsules templated on various cores. Langmuir 20, 7265–7269 (2004).

    Article  CAS  Google Scholar 

  28. Tokuriki, N. et al. Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nature Commun. 3, 1257 (2012).

    Article  Google Scholar 

  29. Dicosimo, R., McAuliffe, J., Poulose, A. J. & Bohlmann, G. Industrial use of immobilized enzymes. Chem. Soc. Rev. 42, 6437–6474 (2013).

    Article  CAS  Google Scholar 

  30. Theberge, A. B. et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed. 49, 5846–5868 (2010).

    Article  CAS  Google Scholar 

  31. Ahn, K. et al. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88, 024104 (2006).

    Article  Google Scholar 

  32. Baret, J. C. et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9, 1850–1858 (2009).

    Article  CAS  Google Scholar 

  33. Agresti, J. J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl Acad. Sci. USA 107, 4004–4009 (2010).

    Article  CAS  Google Scholar 

  34. Hawley, T. S. & Hawley, R. G. Flow Cytometry Protocols (Humana Press, 2004).

    Book  Google Scholar 

  35. Fernandez-Alvaro, E. et al. A combination of in vivo selection and cell sorting for the identification of enantioselective biocatalysts. Angew. Chem. Int. Ed. 50, 8584–8587 (2011).

    Article  CAS  Google Scholar 

  36. Yang, G. & Withers, S. G. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. Chembiochem 10, 2704–2715 (2009).

    Article  CAS  Google Scholar 

  37. Becker, S. et al. Single-cell high-throughput screening to identify enantioselective hydrolytic enzymes. Angew. Chem. Int. Ed. 47, 5085–5088 (2008).

    Article  CAS  Google Scholar 

  38. Skirtach, A. G., Yashchenok, A. M. & Mohwald, H. Encapsulation, release and applications of LbL polyelectrolyte multilayer capsules. Chem. Commun. 47, 12736–12746 (2011).

    Article  CAS  Google Scholar 

  39. Moya, S., Sukhorukov, G. B., Auch, M., Donath, E. & Mohwald, H. Microencapsulation of organic solvents in polyelectrolyte multilayer micrometer-sized shells. J. Colloid Interface Sci. 216, 297–302 (1999).

    Article  CAS  Google Scholar 

  40. Schoffelen, S. & van Hest, J. C. Chemical approaches for the construction of multi-enzyme reaction systems. Curr. Opin. Struct. Biol. 23, 613–621 (2013).

    Article  CAS  Google Scholar 

  41. Liu, Y. et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nature Nanotech. 8, 187–192 (2013).

    Article  CAS  Google Scholar 

  42. Oroz-Guinea, I. & Garcia-Junceda, E. Enzyme catalysed tandem reactions. Curr. Opin. Chem. Biol. 17, 236–249 (2013).

    Article  CAS  Google Scholar 

  43. Garcia-Junceda, E. Multi-Step Enzyme Catalysis: Biotransformations and Chemoenzymatic Synthesis (VCH, 2008).

    Book  Google Scholar 

  44. Ricca, E., Brucher, B. & Schrittwieser, J. H. Multi-enzymatic cascade reactions: overview and perspectives. Adv. Synth. Catal. 353, 2239–2262 (2011).

    Article  CAS  Google Scholar 

  45. Zhang, Y-H. P. Simpler is better: high-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB). ACS Catal. 1, 998–1009 (2011).

    Article  CAS  Google Scholar 

  46. Ro, D. K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  Google Scholar 

  47. Pirie, C. M., De Mey, M., Jones Prather, K. L. & Ajikumar, P. K. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis. ACS Chem. Biol. 8, 662–672 (2013).

    Article  CAS  Google Scholar 

  48. Zhao, H. Synthetic Biology (Academic Press, 2013).

    Google Scholar 

  49. Devenish, S. R., Kaltenbach, M., Fischlechner, M. & Hollfelder, F. in Protein Nanotechnology: Protocols, Instrumentation and Applications Vol. 996 (ed. Gerrard, J.) 269–286 (2013).

    Book  Google Scholar 

Download references

Acknowledgements

This research was funded by the Engineering and Physical Sciences Research Council, by European Union Marie-Curie fellowships (to M.F. and M.F.M.) and by fellowships from the Schering Foundation, the Cambridge Overseas Trust and Trinity Hall (to Y.S.). F.H. is a European Research Council Starting Investigator. We thank N. Miller for help with FACS and several colleagues for helpful discussions and comments on the manuscript. We thank RainDance Technologies (Lexington, USA) for a sample of the EA-surfactant.

Author information

Authors and Affiliations

Authors

Contributions

M.F. developed the concept and designed, conducted and analysed the experiments. Y.S. developed the concept and designed, conducted and analysed preliminary experiments. M.F., Y.S., M.F.M. and F.H. wrote the manuscript. M.M. and S.P. synthesized enzyme substrates. F.H. and C.A. directed the research.

Corresponding author

Correspondence to Florian Hollfelder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1758 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischlechner, M., Schaerli, Y., Mohamed, M. et al. Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nature Chem 6, 791–796 (2014). https://doi.org/10.1038/nchem.1996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1996

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing