Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of ultrafast molecular photodissociation by laser-field-induced potentials

Abstract

Experiments aimed at understanding ultrafast molecular processes are now routine, and the notion that external laser fields can constitute an additional reagent is also well established. The possibility of externally controlling a reaction with radiation increases immensely when its intensity is sufficiently high to distort the potential energy surfaces at which chemists conceptualize reactions take place. Here we explore the transition from the weak- to the strong-field regimes of laser control for the dissociation of a polyatomic molecule, methyl iodide. The control over the yield of the photodissociation reaction proceeds through the creation of a light-induced conical intersection. The control of the velocity of the product fragments requires external fields with both high intensities and short durations. This is because the mechanism by which control is exerted involves modulating the potentials around the light-induced conical intersection, that is, creating light-induced potentials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential energy curves of the relevant electronic states involved in the photodissociation of CH3I in the A band along the RC–I coordinate.
Figure 2: Appearance of a dissociation channel mediated by a LICI.
Figure 3: Control of the release of kinetic energy in the main dissociation channel.
Figure 4: Numerical simulations of the dissociation reaction in four different scenarios with respect to the nature of the control field.

Similar content being viewed by others

References

  1. Brumer, P. W. & Shapiro, M. Principles of the Quantum Control of Molecular Processes (Wiley-Interscience, 2003).

    Google Scholar 

  2. Rice, S. A. & Zhao, M. Optical Control of Molecular Dynamics (Wiley-Interscience, 2000).

    Google Scholar 

  3. Klessinger, M. & Michl, J. Excited States and Photochemistry of Organic Molecules (VCH, 1995).

    Google Scholar 

  4. Tramer, A., Jungen, C. & Lahmani, F. Energy Dissipation in Molecular Systems (Springer-Verlag, 2005).

    Google Scholar 

  5. González-Vázquez, J., González, L., Solá, I. R. & Santamaría, J. Laser control of conical intersections: quantum model simulations for the averaged loss–gain strategies of fast electronic deactivation in 1,1-difluoroethylene. J Chem. Phys. 131, 104302 (2009).

    Article  Google Scholar 

  6. Cederbaum, L. S., Chiang, Y-C., Demekhin, P. V. & Moiseyev, N. Resonant Auger decay of molecules in intense X-ray laser fields: light-induced strong nonadiabatic effects. Phys. Rev. Lett. 106, 123001 (2011).

    Article  Google Scholar 

  7. Kim, J. et al. Control of 1,3-cyclohexadiene photoisomerization using light-induced conical intersections. J. Phys. Chem. A 116, 2758–2763 (2012).

    Article  CAS  Google Scholar 

  8. Csehi, A. et al. Dressed adiabatic and diabatic potentials for the Renner–Teller/Jahn–Teller F+H2 system. J. Phys. Chem. A 117, 8497–8505 (2013).

    Article  CAS  Google Scholar 

  9. Yuan, J-M. & George, T. F. Semiclassical theory of unimolecular dissociation induced by a laser field. J. Chem. Phys. 68, 3040–3052 (2008).

    Article  Google Scholar 

  10. Bandrauk, A. D. & Sink, M. L. Photodissociation in intense laser fields: predissociation analogy. J. Chem. Phys. 74, 1110–1117 (1981).

    Article  CAS  Google Scholar 

  11. Aubanel, E. E. & Bandrauk, A. D. Rapid vibrational inversion via time gating of laser-induced avoided crossings in high-intensity photodissociation. J. Phys. Chem. 97, 12620–12624 (1993).

    Article  CAS  Google Scholar 

  12. Sändig, K., Figger, H. & Hänsch, T. W. Dissociation dynamics of H2+ in intense laser fields: investigation of photofragments from single vibrational levels. Phys. Rev. Lett. 85, 4876–4879 (2000).

    Article  Google Scholar 

  13. González-Vázquez, J., González, L., Nichols, S. R., Weinacht, T. C. & Rozgonyi T. Exploring wave packet dynamics behind strong-field momentum-dependent photodissociation of CH2BrI+. Phys. Chem. Chem. Phys. 12, 14203–14216 (2010).

    Article  Google Scholar 

  14. Garraway, B. M. & Suominen, K-A. Adiabatic passage by light-induced potentials in molecules. Phys. Rev. Lett. 80, 932–935 (1998).

    Article  CAS  Google Scholar 

  15. Gedanken, A. & Rowe, M. D. Magnetic circular dichroism spectra of the methyl halides. Resolution of the nσ* continuum. Chem. Phys. Lett. 34, 39–43 (1975).

    Article  CAS  Google Scholar 

  16. Loo, R. O., Haerri, H-P., Hall, G. E. & Houston, P. L. Methyl rotation, vibration, and alignment from a multiphoton ionization study of the 266 nm photodissociation of methyl iodide. J. Chem. Phys. 90, 4222–4236 (1989).

    Article  CAS  Google Scholar 

  17. Chandler, D. W. & Houston, P. L. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87, 1445–1447 (1987).

    Article  CAS  Google Scholar 

  18. Guo, H. Three-dimensional photodissociation dynamics of methyl iodide. J. Chem. Phys. 96, 6629–6642 (1992).

    Article  CAS  Google Scholar 

  19. Amatatsu, Y., Yabushita, S. & Morokuma, K. Full nine dimensional ab initio potential energy surfaces and trajectory studies of A band photodissociation dynamics: CH3I* →CH3 + I, CH3 + I*, and CD3I*→CD3 + I, CD3 + I*. J. Chem. Phys. 104, 9783–9794 (1996).

    Article  CAS  Google Scholar 

  20. Eppink, A. T. J. B. & Parker, D. H. Methyl iodide A-band decomposition study by photofragment velocity imaging. J. Chem. Phys. 109, 4758–4767 (1998).

    Article  CAS  Google Scholar 

  21. Eppink, A. T. J. B. & Parker, D. H. Energy partitioning following photodissociation of methyl iodide in the A band: a velocity mapping study. J. Chem. Phys. 110, 832–844 (1999).

    Article  CAS  Google Scholar 

  22. Xie, D., Guo, H., Amatatsu, Y. & Kosloff, R. Three-dimensional photodissociation dynamics of rotational state selected methyl iodide. J. Phys. Chem. A 104, 1009–1019 (2000).

    Article  CAS  Google Scholar 

  23. de Nalda, R. et al. A detailed experimental and theoretical study of the femtosecond A-band photodissociation of CH3I. J. Chem. Phys. 128, 244309 (2008).

    Article  Google Scholar 

  24. Rubio-Lago, L., García-Vela, A., Arregui, A., Amaral, G. A. & Bañares, L. The photodissociation of CH3I in the red edge of the A-band: comparison between slice imaging experiments and multisurface wave packet calculations. J. Chem. Phys. 131, 174309 (2009).

    Article  CAS  Google Scholar 

  25. Gross, P., Neuhauser, D. & Rabitz, H. Teaching lasers to control molecules in the presence of laboratory field uncertainty and measurement imprecision. J. Chem. Phys. 98, 4557–4566 (1993).

    Article  CAS  Google Scholar 

  26. Sussman, B. J., Townsend, D., Ivanov, M. Y. & Stolow, A. Dynamic stark control of photochemical processes. Science 314, 278–281 (2006).

    Article  CAS  Google Scholar 

  27. González-Vázquez, J., Solá, I. R., Santamaría, J. & Malinovsky, V. S. Quantum control of spin–orbit coupling by dynamic Stark-shifts induced by laser fields. Chem. Phys. Lett. 431, 231–235 (2006).

    Article  Google Scholar 

  28. González-Vázquez, J., Solá, I. R., Santamaría, J. & Malinovsky, V. S. Vibrationally state-selective spin–orbit transfer with strong nonresonant pulses. J. Phys. Chem. A 111, 2670–2678 (2007).

    Article  Google Scholar 

  29. Chang, B. Y., Shin, S. & Sola, I. R. Further aspects on the control of photodissociation in light-induced potentials. J. Chem. Phys. 131, 204314 (2009).

    Article  Google Scholar 

  30. Chang, B. Y., Shin, S., Santamaría, J. & Solá, I. R. Bond breaking in light-induced potentials. J. Chem. Phys. 130, 124320 (2009).

    Article  Google Scholar 

  31. Suominen, K-A. & Garraway, B. M. Wave-packet dynamics: level-crossing-induced changes in momentum distributions. Phys. Rev. A 48, 3811–3819 (1993).

    Article  CAS  Google Scholar 

  32. Corrales, M. E., Balerdi, G., Loriot, V., de Nalda, R. & Bañares, L. Strong field control of predissociation dynamics. Faraday Discuss. 163, 447–460 (2013).

    Article  CAS  Google Scholar 

  33. Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477–3484 (1997).

    Article  CAS  Google Scholar 

  34. Vredenborg, A., Lehmann, C. S., Irimia, D., Roeterdink, W. G. & Janssen, M. H. M. The reaction microscope: imaging and pulse shaping control in photodynamics. ChemPhysChem 12, 1459–1473 (2011).

    Article  CAS  Google Scholar 

  35. Garcia, G. A., Nahon, L. & Powis, I. Two-dimensional charged particle image inversion using a polar basis function expansion. Rev. Sci. Instrum. 75, 4989–4996 (2004).

    Article  CAS  Google Scholar 

  36. García-Vela, A., de Nalda, R., Durá, J., González-Vázquez, J. & Bañares, L. A 4D wavepacket study of the CH3I photodissociation in the A-band. Comparison with femtosecond velocity map imaging experiments. J. Chem. Phys. 135, 154306 (2011).

    Article  Google Scholar 

  37. Peterson, K. A., Shepler, B. C., Figgen, D. & Stoll, H. On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J. Phys. Chem. A 110, 13877–13883 (2006).

    Article  CAS  Google Scholar 

  38. Werner, H-J. et al. MOLPRO, version 2012.1, a package of ab initio programs (http://www.molpro.net. 2012).

  39. Alekseyev, A. B., Liebermann, H-P. & Buenker, R. J. An ab initio study of the CH3I photodissociation. II. Transition moments and vibrational state control of the I* quantum yields. J. Chem. Phys. 126, 234103 (2007).

    Article  Google Scholar 

  40. Shapiro, M. Photophysics of dissociating methyl iodide: resonance Raman and vibronic photofragmentation maps. J. Phys. Chem. 90, 3644–3653 (1986).

    Article  CAS  Google Scholar 

  41. Feit, M., Fleck J. Jr & Steiger, A. Solution of the Schrödinger equation by a spectral method. J. Comp. Phys. 47, 412–433 (1982).

    Article  CAS  Google Scholar 

  42. Feit, M. D. & Fleck, J. Solution of the Schrödinger equation by a spectral method. II: Vibrational energy levels of triatomic molecules. J. Chem. Phys. 78, 301–308 (1983).

    Article  CAS  Google Scholar 

  43. Feit, M. D. & Fleck, J. Wave packet dynamics and chaos in the Hénon–Heiles system. J. Chem. Phys. 80, 2578–2584 (1984).

    Article  CAS  Google Scholar 

  44. Kosloff, R. Propagation methods for quantum molecular dynamics. Ann. Rev. Phys. Chem. 45, 145–178 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the Spanish Ministry of Economy and Competitiveness (MINECO) through grants CTQ2008-02578, CTQ2012-37404-C02-01 and CTQ2012-36184, Consolider program SAUUL CSD2007-00013 and the European Union Initial Training Networks ‘Ultrafast control of quantum systems by strong laser fields’ (FASTQUAST, PITN-GA-2008-214962). This research was performed within the Unidad Asociada ‘Química Física Molecular’ between the Departamento de Química Física of Universidad Complutense de Madrid (UCM) and Consejo Superior de Investigaciones Científicas (CSIC). J.G-V. thanks the Spanish MINECO for a Juan de la Cierva grant and the PIM2010ECC-00751 project for financial support. The facilities provided by the Centro de Asistencia a la Investigación de Láseres Ultrarrápidos at UCM and the computational resources of the ‘Trueno’ cluster at CSIC are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.E.C. and J.G-V. contributed equally to the paper. M.E.C. and G.B. performed the experiments and analysed the experimental data. J.G-V. designed and performed the calculations. I.R.S. conceived and designed the calculations and is responsible for the theoretical interpretation of the results. R.N. and L.B. conceived and designed the experiments. All authors contributed to writing sections of the paper.

Corresponding authors

Correspondence to I. R. Solá or L. Bañares.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 319 kb)

Supplementary information

Supplementary Video 1a (AVI 804 kb)

Supplementary information

Supplementary Video 1b (AVI 928 kb)

Supplementary information

Supplementary Video 1c (AVI 987 kb)

Supplementary information

Supplementary Video 1d (AVI 946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrales, M., González-Vázquez, J., Balerdi, G. et al. Control of ultrafast molecular photodissociation by laser-field-induced potentials. Nature Chem 6, 785–790 (2014). https://doi.org/10.1038/nchem.2006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing