Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The direct anti-Markovnikov addition of mineral acids to styrenes

Abstract

The direct anti-Markovnikov addition of strong Brønsted acids to alkenes remains an unsolved problem in synthetic chemistry. Here, we report an efficient organic photoredox catalyst system for the addition of HCl, HF and also phosphoric and sulfonic acids to alkenes, with complete regioselectivity. These transformations were developed using a photoredox catalyst in conjunction with a redox-active hydrogen atom donor. The nucleophile counterion plays a critical role by ensuring high reactivity, with 2,6-lutidinium salts typically furnishing the best results. The nature of the redox-active hydrogen atom donor is also consequential, with 4-methoxythiophenol providing the best reactivity when 2,6-lutidinium salts are used. A novel acridinium sensitizer provides enhanced reactivity within several of the more challenging reaction manifolds. This Article demonstrates how nucleophilic addition reactions mediated by photoredox catalysis can change the way electrophilic and homofugal precursors are constructed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Previous and current reports on the anti-Markovnikov addition of nucleophiles to alkenes.
Figure 2: Proposed catalytic cycle for the anti-Markovnikov hydrohalogenation of styrenyl alkenes.
Figure 3: Effect of different amine hydrochloride salts on the anti-Markovnikov hydrochlorination of β-methylstyrene.

Similar content being viewed by others

References

  1. Togo, H. Advanced Free Radical Reactions for Organic Synthesis (Elsevier, 2004).

    Google Scholar 

  2. Carey, F. A. & Sundberg, R. J. Advanced Organic Chemistry 5th edn (Springer, 2007).

    Google Scholar 

  3. Rudolph, A. & Lautens, M. Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions. Angew. Chem. Int. Ed. 48, 2656–2670 (2009).

    Article  CAS  Google Scholar 

  4. Terao, J. & Kambe, N. Cross-coupling reaction of alkyl halides with Grignard reagents catalyzed by Ni, Pd, or Cu complexes with π-carbon ligand(s). Acc. Chem. Res. 41, 1545–1554 (2008).

    Article  CAS  Google Scholar 

  5. Binder, J. T., Cordier, C. J. & Fu, G. C. Catalytic enantioselective cross-couplings of secondary alkyl electrophiles with secondary alkylmetal nucleophiles: Negishi reactions of racemic benzylic bromides with achiral alkylzinc reagents. J. Am. Chem. Soc. 134, 17003–17006 (2012).

    Article  CAS  Google Scholar 

  6. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

    Article  CAS  Google Scholar 

  7. Smith, M. B. & March, J. in Substitution Reactions: Free Radicals in Advanced Organic Chemistry 6th edn, Ch. 14 (Wiley, 2007).

    Google Scholar 

  8. Fuller, S. E., Smith, J. R. L., Norman, R. O. C. & Higgins, R. Selectivity in the halogenation of hexane by tertiary aminium radicals from the photodecomposition of N-halogenoammonium perchlorates. J. Chem. Soc. Perkin Trans. 2, 545–552 (1981).

    Article  Google Scholar 

  9. Kharasch, M. S. & Kleiman, M. Synthesis of polyenes. III. A new synthesis of diethylstilbestrol. J. Am. Chem. Soc. 65, 11–15 (1943).

    Article  CAS  Google Scholar 

  10. Beller, M., Seayad, J., Tillack, A. & Jiao, H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angew. Chem. Int. Ed. 43, 3368–3398 (2004).

    Article  CAS  Google Scholar 

  11. Kharasch, M. S. & Mayo, F. R. The peroxide effect in the addition of reagents to unsaturated compounds. I. The addition of hydrogen bromide to allyl bromide. J. Am. Chem. Soc. 55, 2468–2496 (1933).

    Article  CAS  Google Scholar 

  12. Mayo, F. R. Free radical addition and transfer reactions of hydrogen chloride with unsaturated compounds. J. Am. Chem. Soc. 76, 5392–5396 (1954).

    Article  CAS  Google Scholar 

  13. Brown, H. C. & De Lue, N. R. Organoboranes for synthesis. 12. The reaction of organoboranes with nitrogen trichloride. A convenient procedure for the conversion of alkenes into alkyl chlorides via hydroboration. Tetrahedron 44, 2785–2792 (1988).

    Article  CAS  Google Scholar 

  14. Zheng, J. et al. Synthesis of diverse well-defined functional polymers based on hydrozirconation and subsequent anti-Markovnikov halogenation of 1,2-polybutadiene. Macromolecules 45, 1190–1197 (2012).

    Article  CAS  Google Scholar 

  15. Appel, R. Tertiary phosphane/tetrachloromethane, a versatile reagent for the chlorination, dehydration, and P–N linkage. Angew. Chem. Int. Ed. 14, 801–811 (1975).

    Article  Google Scholar 

  16. Squires, T. G., Schmidt, W. W. & McCandlish, C. S. Jr. Zinc chloride catalysis in the reaction of thionyl halides with aliphatic alcohols. J. Org. Chem. 40, 134–136 (1975).

    Article  CAS  Google Scholar 

  17. Furuya, T., Kuttruff, C. A. & Ritter, T. Carbon–fluorine bond formation. Curr. Opin. Drug Discov. 11, 803–819 (2008).

    CAS  Google Scholar 

  18. Dong, G., Teo, P., Wickens, Z. K. & Grubbs, R. H. Primary alcohols from terminal olefins: formal anti-Markovnikov hydration via triple relay catalysis. Science 333, 1609–1612 (2011).

    Article  CAS  Google Scholar 

  19. Takaya, J. & Hartwig, J. F. Mechanistic studies of ruthenium-catalyzed anti-Markovnikov hydroamination of vinylarenes: intermediates and evidence for catalysis through π-arene complexes. J. Am. Chem. Soc. 127, 5756–5757 (2005).

    Article  CAS  Google Scholar 

  20. Takemiya, A. & Hartwig, J. F. Rhodium-catalyzed intramolecular, anti-Markovnikov hydroamination. Synthesis of 3-arylpiperidines. J. Am. Chem. Soc. 128, 6042–6043 (2006).

    Article  CAS  Google Scholar 

  21. Zhu, S., Niljianskul, N. & Buchwald, S. L. Enantio- and regioselective CuH-catalyzed hydroamination of alkenes. J. Am. Chem. Soc. 135, 15746–15749 (2013).

    Article  CAS  Google Scholar 

  22. Hamilton, D. S. & Nicewicz, D. A. Direct catalytic anti-Markovnikov hydroetherification of alkenols. J. Am. Chem. Soc. 134, 18577–18580 (2012).

    Article  CAS  Google Scholar 

  23. Nguyen, T. M. & Nicewicz, D. A. Anti-Markovnikov hydroamination of alkenes catalyzed by an organic photoredox system. J. Am. Chem. Soc. 135, 9588–9591 (2013).

    Article  CAS  Google Scholar 

  24. Perkowski, A. J. & Nicewicz, D. A. Direct catalytic anti-Markovnikov addition of carboxylic acids to alkenes. J. Am. Chem. Soc. 135, 10334–10337 (2013).

    Article  CAS  Google Scholar 

  25. Neunteufel, R. A. & Arnold, D. R. Radical ions in photochemistry. I. The 1,1-diphenylethylene cation radical. J. Am. Chem. Soc. 95, 4080–4081 (1973).

    Article  CAS  Google Scholar 

  26. Gassman, P. G. & Bottorff, K. J. Photoinduced lactonization. A useful but mechanistically complex single electron transfer process. J. Am. Chem. Soc. 109, 7547–7548 (1987).

    Article  CAS  Google Scholar 

  27. Pasto, D. J. & Gadberry, J. F Stereoselectivity and mechanism of acid-catalyzed additions of acetic acid to (E)- and (Z)-2-butene in acetic acid. J. Am. Chem. Soc. 100, 1469–1473 (1978).

    Article  CAS  Google Scholar 

  28. Pearson, R. G., Sobel, H. R. & Songstad, J. Nucleophilic reactivity constants toward methyl iodide and trans-[Pt(py)2Cl2]. J. Am. Chem. Soc. 90, 319–326 (1968).

    Article  CAS  Google Scholar 

  29. Johnston, L. J. & Schepp, N. P. Reactivity of radical cations: characterization of styrene radical cations and measurements of their reactivity toward nucleophiles. J. Am. Chem. Soc. 115, 6564–6571 (1993).

    Article  CAS  Google Scholar 

  30. Fukuzumi, S. & Ohkubo, K. Selective photocatalytic reactions with organic photocatalysts. Chem. Sci. 4, 561–574 (2013).

    Article  CAS  Google Scholar 

  31. Benniston, A. C. et al. Charge shift and triplet state formation in the 9-mesityl-10-methylacridinium cation. J. Am. Chem. Soc. 127, 16054–16064 (2005).

    Article  CAS  Google Scholar 

  32. Bordwell, F. G., Zhang, X-M., Satish, A. V. & Cheng, J-P. Assessment of the importance of changes in ground-state energies on the bond dissociation enthalpies of the O–H bonds in phenols and the S–H bonds in thiophenols. J. Am. Chem. Soc. 116, 6605–6610 (1994).

    Article  CAS  Google Scholar 

  33. O'Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 37, 308–319 (2008).

    Article  CAS  Google Scholar 

  34. Wang, J. et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 114, 2432–2506 (2014).

    Article  CAS  Google Scholar 

  35. Liang, T., Neumann, C. N. & Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. 52, 8214–8264 (2013).

    Article  CAS  Google Scholar 

  36. Olah, G. A., Masatomo, N. & Kerekes, I. Synthetic methods II1. Hydrofluorination of alkenes, cyclopropane and alkynes with poly-hydrogen fluoride/pyridine (trialkylamine) reagents. Synthesis 12, 779–780 (1973).

    Article  Google Scholar 

  37. Bucsi, T. et al. Stable dialkyl ether/poly(hydrogen fluoride) complexes: dimethyl ether/poly(hydrogen fluoride), a new, convenient, and effective fluorinating agent. J. Am. Chem. Soc. 124, 7728–7736 (2002).

    Article  CAS  Google Scholar 

  38. Barker, T. J & Boger, D. L. Fe(III)/NaBH4-mediated free radical hydrofluorination of unactivated alkenes. J. Am. Chem. Soc. 134, 13588–13591 (2012).

    Article  CAS  Google Scholar 

  39. Shigehisa, H., Nishi, E., Fujisawa, M. & Hiroya, K. Cobalt-catalyzed hydrofluorination of unactivated olefins: a radical approach of fluorine transfer. Org. Lett. 15, 5158–5161 (2013).

    Article  CAS  Google Scholar 

  40. Mangion, D. & Arnold, D. R. Photochemical nucleophile–olefin combination, aromatic substitution reaction. Its synthetic development and mechanistic exploration. Acc. Chem. Res. 35, 297–304 (2002).

    Article  CAS  Google Scholar 

  41. Chan, M. S. W. & Arnold, D. R. Photochemical nucleophile–olefin combination, aromatic substitution (photo-NOCAS) reaction, part 15. Investigations involving fluoride anion as the nucleophile and the effect of fluorine substitution on the relative stability of the reaction intermediates. Can. J. Chem. 75, 1810–1819 (1997).

    Article  CAS  Google Scholar 

  42. Arnold, D. R., McManus, K. A. & Chan, M. S. W. Photochemical nuclophile–olefin combination, aromatic substitution (photo-NOCAS) reaction, part 13. The scope and limitations of the reaction with cyanide anion as the nucleophile. Can. J. Chem. 75, 1055–1075 (1997).

    Article  CAS  Google Scholar 

  43. Lin, Y-C. & Chen, C-T. Acridinium salt-based fluoride and acetate chromofluorescent probes: molecular insights into anion selectivity switching. Org. Lett. 11, 4858–4861 (2009).

    Article  CAS  Google Scholar 

  44. Ohkubo, K. et al. Simultaneous production of p-tolualdehyde and hydrogen peroxide in photocatalytic oxygenation of p-xylene and reduction of oxygen with 9-mesityl-10-methylacridinium ion derivatives. Chem. Commun. 46, 601–603 (2010).

    Article  CAS  Google Scholar 

  45. Franz, R. Über Trishydrofluoride tertiärer Amine und ihren Einsatz als Fluorierungsmittel. J. Fluorine Chem. 15, 423–434 (1980).

    Article  CAS  Google Scholar 

  46. Shellhamer, D. F. et al. Reaction of aminosulfur trifluorides with alcohols: inversion vs. retention. J. Chem. Soc. Perkins Trans. 2, 973–977 (1996).

    Article  Google Scholar 

  47. Wilger, D. J., Gesmundo, N. J. & Nicewicz, D. A. Catalytic hydrotrifluoromethylation of styrenes and unactivated aliphatic alkenes via an organic photoredox system. Chem. Sci. 4, 3160–3165 (2013).

    Article  CAS  Google Scholar 

  48. Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and Technology 6th edn (CRC Press, 2013).

    Google Scholar 

  49. Marziano, N. C., Sampoli, M. & Gonizzi, M. On the Mc activity coefficient function describing solute and solvent equilibria: methane sulfonic acid aqueous solutions. J. Phys. Chem. 90, 4347–4353 (1986).

    Article  CAS  Google Scholar 

  50. Raamat, E. et al. Acidities of strong neutral Brønsted acids in different media. J. Phys. Org. Chem. 26, 162–170 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from The David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Contributions

D.J.W., J-M.M.G. and T.R.L. performed the experiments. D.A.N. guided the research. D.J.W. performed the experiments on the optimization and substrate scope for the anti-Markovnikov hydrochlorination. D.J.W. and J-M.M.G. performed the experiments on the optimization and substrate scope for the anti-Markovnikov hydrofluorination. D.J.W., J-M.M.G. and T.R.L. performed the experiments on the optimization and substrate scope for the anti-Markovnikov phosphate additions. J-M.M.G. performed the experiments on the optimization and substrate scope for the anti-Markovnikov sulfonate additions. D.J.W., J-M.M.G. and D.A.N. co-wrote the manuscript.

Corresponding author

Correspondence to David A. Nicewicz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5801 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilger, D., Grandjean, JM., Lammert, T. et al. The direct anti-Markovnikov addition of mineral acids to styrenes. Nature Chem 6, 720–726 (2014). https://doi.org/10.1038/nchem.2000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing