Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directed assembly of optoelectronically active alkyl–π-conjugated molecules by adding n-alkanes or π-conjugated species

A Corrigendum to this article was published on 22 September 2014

This article has been updated

Abstract

Supramolecular assembly can yield ordered structures by taking advantage of the cumulative effect of multiple non-covalent interactions between adjacent molecules. The thermodynamic origin of many self-assembled structures in water is the balance between the hydrophilic and hydrophobic segments of the molecule. Here, we show that this approach can be generalized to use solvophobic and solvophilic segments of fully hydrophobic alkylated fullerene molecules. Addition of n-alkanes results in their assembly—due to the antipathy of C60 towards n-alkanes—into micelles and hexagonally packed gel-fibres containing insulated C60 nanowires. The addition of pristine C60 instead directs the assembly into lamellar mesophases by increasing the proportion of π-conjugated material in the mixture. The assembled structures contain a large fraction of optoelectronically active material and exhibit comparably high photoconductivities. This method is shown to be applicable to several alkyl–π-conjugated molecules, and can be used to construct organized functional materials with π-conjugated sections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Micelle formation by 1, driven by addition of n-alkane solvents.
Figure 2: Gel formation by 2, driven by addition of n-alkane solvents.
Figure 3: Structure and photoconductivity of the gel fibres formed by 2.
Figure 4: Structure, rheological properties and photoconductivity of the lamellar mesophase formed by 1, driven by addition of C60.

Similar content being viewed by others

Change history

  • 25 June 2014

    In the version of this Article originally published, the units on the y axes of Figs 1d and 2c were incorrect; they should have read cm–1. This has been corrected in all versions of the Article.

References

  1. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  2. Sobczak, J-P. J., Martin, T. G., Gerling, T. & Dietz, H. Rapid folding of DNA into nanoscale shapes at constant temperature. Science 338, 1458–1461 (2012).

    Article  CAS  Google Scholar 

  3. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  Google Scholar 

  4. Du, G., Moulin, E., Jouault, N., Buhler, E. & Giuseppone, N. Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504–12508 (2012).

    Article  CAS  Google Scholar 

  5. Wang, C., Wang, Z. & Zhang, X. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Acc. Chem. Res. 45, 608–618 (2012).

    Article  CAS  Google Scholar 

  6. Israelachvili, J. in Surfactants in Solution (eds Mittal, K. L. & Bothorel, P.) 3–33 (Springer, 1987).

    Google Scholar 

  7. Altoe, V., Martin, F., Katan, A., Salmeron, M. & Aloni, S. Electron microscopy reveals structure and morphology of one molecule thin organic films. Nano Lett. 12, 1295–1299 (2012).

    Article  CAS  Google Scholar 

  8. Henson, Z. B., Müllen, K. & Bazan, G. C. Design strategies for organic semiconductors beyond the molecular formula. Nature Chem. 4, 699–704 (2012).

    Article  CAS  Google Scholar 

  9. Pisula, W., Feng, X. & Müllen, K. Tuning the columnar organization of discotic polycyclic aromatic hydrocarbons. Adv. Mater. 22, 3634–3649 (2010).

    Article  CAS  Google Scholar 

  10. Percec, V. et al. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 419, 384–387 (2002).

    Article  CAS  Google Scholar 

  11. Saez, I. M. & Goodby, J. W. Supermolecular liquid crystals. J. Mater. Chem. 15, 26–40 (2005).

    Article  CAS  Google Scholar 

  12. Guillon, D., Donnio, B. & Deschenaux, R. in Supramolecular Chemistry of Fullerenes and Carbon Nanotubes (eds Martín, N. & Nierengarten, J-F.) 203–235 (Wiley-VCH, 2012).

    Google Scholar 

  13. Binks, B. P., Fletcher, P. D. I., Kotsev, S. N. & Thompson, R. L. Adsorption and aggregation of semifluorinated alkanes in binary and ternary mixtures with hydrocarbon and fluorocarbon solvents. Langmuir 13, 6669–6682 (1997).

    Article  CAS  Google Scholar 

  14. Blanazs, A., Armes, S. P. & Ryan, A. J. Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol. Rapid Commun. 30, 267–277 (2009).

    Article  CAS  Google Scholar 

  15. Nakanishi, T. Supramolecular soft and hard materials based on self-assembly algorithms of alkyl-conjugated fullerenes. Chem. Commun. 46, 3425–3436 (2010).

    Article  CAS  Google Scholar 

  16. Li, H. et al. Alkylated-C60 based soft materials: regulation of self-assembly and optoelectronic properties by chain branching. J. Mater. Chem. C 1, 1943–1951 (2013).

    Article  CAS  Google Scholar 

  17. Vergara, J. et al. Liquid-crystalline hybrid materials based on [60]fullerene and bent-core structures. Angew. Chem. Int. Ed. 50, 12523–12528 (2011).

    Article  CAS  Google Scholar 

  18. Li, H., Choi, J. & Nakanishi, T. Optoelectronic functional materials based on alkylated-π molecules: self-assembled architectures and nonassembled liquids. Langmuir 29, 5394–5406 (2013).

    Article  CAS  Google Scholar 

  19. Zhong, Y-W., Matsuo, Y. & Nakamura, E. Lamellar assembly of conical molecules possessing a fullerene apex in crystals and liquid crystals. J. Am. Chem. Soc. 129, 3052–3053 (2007).

    Article  CAS  Google Scholar 

  20. Ruoff, R. S., Tse, D. S., Malhotra, R. & Lorents, D. C. Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 97, 3379–3383 (1993).

    Article  CAS  Google Scholar 

  21. Kordatos, K., Da Ros, T., Prato, M., Bensasson, R. V. & Leach, S. Absorption spectra of the mono-adduct and eight bis-adduct regioisomers of pyrrolidine derivatives of C60 . Chem. Phys. 293, 263–280 (2003).

    Article  CAS  Google Scholar 

  22. Sedov, I. A., Stolov, M. A. & Solomonov, B. N. Solvophobic effects and relationships between the Gibbs energy and enthalpy for the solvation process. J. Phys. Org. Chem. 24, 1088–1094 (2011).

    Article  CAS  Google Scholar 

  23. Moyá, M. L., Rodríguez, A., Graciani, M. del M. & Fernández, G. Role of the solvophobic effect on micellization. J. Colloid Interface Sci. 316, 787–795 (2007).

    Article  Google Scholar 

  24. Hollamby, M. J. Practical applications of small-angle neutron scattering. Phys. Chem. Chem. Phys. 15, 10566–10579 (2013).

    Article  CAS  Google Scholar 

  25. Guinier, A. La diffraction des rayons X aux tres petits angles: Application a l'étude de phénomenes ultramicroscopiques. Ann. Phys. 12, 161–237 (1939).

    Article  CAS  Google Scholar 

  26. Hyde, S. T. in Handbook of Applied Surface and Colloid Chemistry Vol. 1–2, 299–332 (Wiley, 2001).

    Google Scholar 

  27. Ishi-i, T., Ono, Y. & Shinkai, S. Chirally-ordered fullerene assemblies found in organic gel systems of cholesterol-appended [60]fullerenes. Chem. Lett. 29, 808–809 (2000).

    Article  Google Scholar 

  28. Yang, X. et al. Self-assembly of a new C60 compound with an L-glutamid-derived lipid unit: formation of organogels and hierarchically structured spherical particles. Soft Matter 7, 3592–3598 (2011).

    Article  CAS  Google Scholar 

  29. Newbloom, G. M., Kim, F. S., Jenekhe, S. A. & Pozzo, D. C. Mesoscale morphology and charge transport in colloidal networks of poly(3-hexylthiophene). Macromolecules 44, 3801–3809 (2011).

    Article  CAS  Google Scholar 

  30. Saeki, A., Seki, S., Takenobu, T., Iwasa, Y. & Tagawa, S. Mobility and dynamics of charge carriers in rubrene single crystals studied by flash-photolysis microwave conductivity and optical spectroscopy. Adv. Mater. 20, 920–923 (2008).

    Article  CAS  Google Scholar 

  31. Babu, S. S., Saeki, A., Seki, S., Möhwald, H. & Nakanishi, T. Millimeter-sized flat crystalline sheet architectures of fullerene assemblies with anisotropic photoconductivity. Phys. Chem. Chem. Phys. 13, 4830–4834 (2011).

    Article  CAS  Google Scholar 

  32. Zhang, X. et al. Flowerlike supramolecular architectures assembled from C60 equipped with a pyridine substituent. Chem. Commun. 46, 8752–8754 (2010).

    Article  CAS  Google Scholar 

  33. Babu, S. S., Prasanthkumar, S. & Ajayaghosh, A. Self-assembled gelators for organic electronics. Angew. Chem. Int. Ed. 51, 1766–1776 (2012).

    Article  CAS  Google Scholar 

  34. Park, C., Song, H. J. & Choi, H. C. The critical effect of solvent geometry on the determination of fullerene (C60) self-assembly into dot, wire and disk structures. Chem. Commun. 4803–4805 (2009).

  35. Lei, T. & Pei, J. Solution-processed organic nano- and micro-materials: design strategy, growth mechanism and applications. J. Mater. Chem. 22, 785–798 (2012).

    Article  CAS  Google Scholar 

  36. Vera, F. et al. Microstructured objects produced by the supramolecular hierarchical assembly of an organic free radical gathering hydrophobic–amphiphilic characteristics. Chem. Sci. 3, 1958–1962 (2012).

    Article  CAS  Google Scholar 

  37. Sathish, M., Miyazawa, K., Hill, J. P. & Ariga, K. Solvent engineering for shape-shifter pure fullerene (C60). J. Am. Chem. Soc. 131, 6372–6373 (2009).

    Article  CAS  Google Scholar 

  38. Balakrishnan, K. et al. Effect of side-chain substituents on self-assembly of perylene diimide molecules: morphology control. J. Am. Chem. Soc. 128, 7390–7398 (2006).

    Article  CAS  Google Scholar 

  39. Hollamby, M. J. et al. Tri-chain hydrocarbon surfactants as designed micellar modifiers for supercritical CO2 . Angew. Chem. Int. Ed. 48, 4993–4995 (2009).

    Article  CAS  Google Scholar 

  40. Ryoo, W., Webber, S. E. & Johnston, K. P. Water-in-carbon dioxide microemulsions with methylated branched hydrocarbon surfactants. Ind. Eng. Chem. Res. 42, 6348–6358 (2003).

    Article  CAS  Google Scholar 

  41. Nurmawati, M. H., Ajikumar, P. K., Renu, R., Sow, C. H. & Valiyaveettil, S. Amphiphilic poly(p-phenylene)-driven multiscale assembly of fullerenes to nanowhiskers. ACS Nano 2, 1429–1436 (2008).

    Article  CAS  Google Scholar 

  42. Kawauchi, T. et al. Encapsulation of fullerenes in a helical PMMA cavity leading to a robust processable complex with a macromolecular helicity memory. Angew. Chem. Int. Ed. 47, 515–519 (2008).

    Article  CAS  Google Scholar 

  43. Tashiro, K. & Aida, T. Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem. Soc. Rev. 36, 189–197 (2007).

    Article  CAS  Google Scholar 

  44. Giacalone, F. & Martín, N. New concepts and applications in the macromolecular chemistry of fullerenes. Adv. Mater. 22, 4220–4248 (2010).

    Article  CAS  Google Scholar 

  45. Patterson, A. L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939).

    Article  CAS  Google Scholar 

  46. Hirata, S. et al. Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer. Adv. Mater. 23, 889–893 (2011).

    Article  CAS  Google Scholar 

  47. Babu, S. S. et al. Nonvolatile liquid anthracenes for facile full-colour luminescence tuning at single blue-light excitation. Nature Commun. 4, 1969 (2013).

    Article  Google Scholar 

  48. Burghardt, S., Hirsch, A., Schade, B., Ludwig, K. & Böttcher, C. Switchable supramolecular organization of structurally defined micelles based on an amphiphilic fullerene. Angew. Chem. Int. Ed. 44, 2976–2979 (2005).

    Article  CAS  Google Scholar 

  49. Nierengarten, J.-F. Chemical modification of C60 for materials science applications. New J. Chem. 28, 1177–1191 (2004).

    Article  CAS  Google Scholar 

  50. Zhao, C. et al. Do deuteriums form stronger CH–π interactions? J. Am. Chem. Soc. 134, 14306–14309 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by KAKENHI (25620069, 25104011) from the MEXT, Japan. M.H. also thanks the Japan Society for the Promotion of Science (JSPS) and NIMS International Center for Young Scientists (ICYS) for funding. The SPring-8 synchrotron radiation experiment was performed on BL40B2 with the approval the Japan Synchrotron Radiation Research Institute (JASRI; proposal no. 2011B1548). The authors thank the beamline contact (N. Ohta, SPring8) for his help with performing SAXS measurements. The authors also thank H. Li (MPI), H. Ozawa, Y. Akasaka, M. Matsuda, J. Aimi and M. Takeuchi (NIMS) for helpful discussions, M. Ohnuma and T. Taguchi (NIMS) for use of the for Rigaku SAXS equipment and rheometer respectively, the Soft Materials Line and the MANA TSS Group at NIMS for use of spectroscopic facilities, and the STFC and Institut Laue Langevin for beam time on D11 at ILL.

Author information

Authors and Affiliations

Authors

Contributions

M.J.H. and T.N. are joint principal investigators; they designed the work, carried out research, analysed data and wrote the paper. M.K. helped to characterize the lamellar mesophases. P.H.H.B. and N.A.J.M.S. performed the cryo-TEM experiments. A.S. and S.S. performed the TRMC studies. H.Mi. contributed to the temperature-dependent XRD studies. I.G., P.B. and J.E. helped acquire the SANS data and advised on presentation and English. B.R.P. helped acquire, reduce and analyse the SAXS data. H.Mö. was involved in developing the concept and in discussions about the work. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Martin J. Hollamby or Takashi Nakanishi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3356 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hollamby, M., Karny, M., Bomans, P. et al. Directed assembly of optoelectronically active alkyl–π-conjugated molecules by adding n-alkanes or π-conjugated species. Nature Chem 6, 690–696 (2014). https://doi.org/10.1038/nchem.1977

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1977

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing