Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging

Abstract

Single-molecule localization microscopy is used to construct super-resolution images, but generally requires prior intense laser irradiation and in some cases additives, such as thiols, to induce on–off switching of fluorophores. These requirements limit the potential applications of this methodology. Here, we report a first-in-class spontaneously blinking fluorophore based on an intramolecular spirocyclization reaction. Optimization of the intramolecular nucleophile and rhodamine-based fluorophore (electrophile) provide a suitable lifetime for the fluorescent open form, and equilibrium between the open form and the non-fluorescent closed form. We show that this spontaneously blinking fluorophore is suitable for single-molecule localization microscopy imaging deep inside cells and for tracking the motion of structures in living cells. We further demonstrate the advantages of this fluorophore over existing methodologies by applying it to nuclear pore structures located far above the coverslip with a spinning-disk confocal microscope and for repetitive time-lapse super-resolution imaging of microtubules in live cells for up to 1 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SLM with spontaneously blinking fluorophore.
Figure 2: Effect of intramolecular nucleophiles and fluorophores on thermal equilibrium of intramolecular spirocyclization.
Figure 3: Switching properties of the antibody-bound dyes in the absence of thiols and an oxygen-scavenging system.
Figure 4: SLM with HMSiR in vitro and in fixed cells.
Figure 5: Live-cell time-lapse SLM with HMSiR.

Similar content being viewed by others

References

  1. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, B., Babcock, H. & Zhuang, X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793–796 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Folling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Methods 5, 943–945 (2008).

    Article  PubMed  Google Scholar 

  7. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    Article  CAS  Google Scholar 

  8. Vogelsang, J. et al. Make them blink: probes for super-resolution microscopy. ChemPhysChem 11, 2475–2490 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. van de Linde, S., Heilemann, M. & Sauer, M. Live-cell super-resolution imaging with synthetic fluorophores. Annu. Rev. Phys. Chem. 63, 519–540 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Steinhauer, C., Forthmann, C., Vogelsang, J. & Tinnefeld, P. Superresolution microscopy on the basis of engineered dark states. J. Am. Chem. Soc. 130, 16840–16841 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Schwering, M. et al. Far-field nanoscopy with reversible chemical reactions. Angew. Chem. Int. Ed. 50, 2940–2945 (2011).

    Article  CAS  Google Scholar 

  12. van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nature Protoc. 6, 991–1009 (2011).

    Article  CAS  Google Scholar 

  13. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nature Methods 8, 1027–1036 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wombacher, R. et al. Live-cell super-resolution imaging with trimethoprim conjugates. Nature Methods 7, 717–719 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Klein, T. et al. Live-cell dSTROM with SNAP-tag fusion proteins. Nature Methods 8, 7–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Lukinavičius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nature Chem. 5, 132–139 (2013).

    Article  Google Scholar 

  17. Kim, H. N., Lee, M. H., Kim, H. J., Kim, J. S. & Yoon, J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev. 37, 1465–1472 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Kenmoku, S., Urano, Y., Kojima, H. & Nagano, T. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J. Am. Chem. Soc. 129, 7313–7318 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Koide, Y., Urano, Y., Hanaoka, K., Terai, T. & Nagano, T. Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. J. Am. Chem. Soc. 133, 5680–5682 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Kamiya, M. et al. β-Galactosidase fluorescence probe with improved cellular accumulation based on a spirocyclized rhodol scaffold. J. Am. Chem. Soc. 133, 12960–12963 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Sakabe, M. et al. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. J. Am. Chem. Soc. 135, 409–414 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Fölling, J. et al. Photochromic rhodamines provide nanoscopy with optical sectioning. Angew. Chem.Int. Ed. 46, 6266–6270 (2007).

    Article  Google Scholar 

  23. Belov, V. N., Bossi, M. L., Fölling, J., Boyarskiy, V. P. & Hell, S. W. Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy. Chem. Eur. J. 15, 10762–10776 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Fu, M., Xiao, Y., Qian, X., Zhao, D. & Xu, Y. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom. Chem. Commun. 1780–1782 (2008).

  25. Koide, Y., Urano, Y., Hanaoka, K., Terai, T. & Nagano, T. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer. ACS Chem. Biol. 6, 600–608 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Corrie, J. E. T. et al. Ring-chain interconversion of sulforhodamine-amine conjugates involves an unusually labile C–N bond and allows measurement of sulfonamide ionization kinetics. J. Phys. Org. Chem. 21, 286–298 (2008).

    Article  CAS  Google Scholar 

  27. Katayama, H., Yamamoto, A., Mizushima, N., Yoshimori, T. & Miyawaki, A. GFP-like proteins stably accumulate in lysosomes. Cell. Struct. Funct. 33, 1–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Jones, S. A., Shim, S.-H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nature Methods 8, 499–505 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quan, T., Zeng, S. & Huang, Z-L. Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal–oxide semiconductor, and charge-coupled devices for superresolution imaging. J. Biomed. Opt. 15, 066005 (2010).

    Article  PubMed  Google Scholar 

  30. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nature Methods 5, 159–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Löschberger, A. et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell. Sci. 125, 570–575 (2012).

    Article  PubMed  Google Scholar 

  32. Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Funakoshi, T. et al. Two distinct human POM121 genes: requirement for the formation of nuclear pore complexes. FEBS Lett. 581, 4910–4916 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Maeshima, K. et al. Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nature Struct. Mol. Biol. 17, 1065–1071 (2010).

    Article  CAS  Google Scholar 

  35. Hoelz, A., Debler, E. W. & Blobel, G. The structure of the nuclear pore complex. Annu. Rev. Biochem. 80, 613–643 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Hinner, M. J. & Johnsson, K. How to obtain labeled proteins and what to do with them. Curr. Opin. Biotechnol. 21, 766–776 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Los, G. V. et al. Halotag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aid for Scientific Research (KAKENHI): 20117003 and 23249004 to Y.U., 23113504 and 25113707 to M.K., 23710108 to M.C.T., 24659092, 25113723 and 25293046 to Y.O. and 21121004 to T. F.), by The Daiichi-Sankyo Foundation of Life Science (to Y.U.), by the Uehara memorial Foundation (to Y.O.), by The Mochida Memorial Foundation for Medical and Pharmaceutical Research (to M.K.) and by a JSPS stipend (to S.U.). The authors thank D. Toomre for many useful discussions, K. Johnsson and G. Lukinavičius for β-tubulin–SNAP plasmid, N. Imamoto for HeLa cell lines expressing nuclear pore proteins, R. Wong for POM121 plasmid, J. Asada and S. Dan Xu for the construction of plasmids and experimental assistance, and Y. Arai for the ImageJ script for analysing projection profiles of the localization of super-resolution images. The African green monkey kidney normal cell line Vero (JCRB0111) was obtained from the Japanese Collection of Research Bioresources (JCRB) cell bank.

Author information

Authors and Affiliations

Authors

Contributions

S.U., M.K., T.Y., Y.O., S.T. and Y.U. conducted experiments and performed analyses. S.U., M.K., Y.O. and Y.U. co-wrote the manuscript. K.S., K.O., M.C.T., T.F. and H.F. contributed materials/analysis tools. M.K. and Y.U. planned and initiated the project, designed experiments, and supervised the entire project.

Corresponding authors

Correspondence to Mako Kamiya or Yasuteru Urano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3781 kb)

Supplementary information

Supplementary Movie 1 (AVI 9195 kb)

Supplementary information

Supplementary Movie 2 (AVI 2654 kb)

Supplementary information

Supplementary Movie 3 (AVI 476 kb)

Supplementary information

Supplementary Movie 4 (AVI 1657 kb)

Supplementary information

Supplementary Movie 5 (AVI 786 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uno, Sn., Kamiya, M., Yoshihara, T. et al. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nature Chem 6, 681–689 (2014). https://doi.org/10.1038/nchem.2002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing