Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging

Abstract

Magnetic resonance imaging (MRI) enables high-resolution non-invasive observation of the anatomy and function of intact organisms. However, previous MRI reporters of key biological processes tied to gene expression have been limited by the inherently low molecular sensitivity of conventional 1H MRI. This limitation could be overcome through the use of hyperpolarized nuclei, such as in the noble gas xenon, but previous reporters acting on such nuclei have been synthetic. Here, we introduce the first genetically encoded reporters for hyperpolarized 129Xe MRI. These expressible reporters are based on gas vesicles (GVs), gas-binding protein nanostructures expressed by certain buoyant microorganisms. We show that GVs are capable of chemical exchange saturation transfer interactions with xenon, which enables chemically amplified GV detection at picomolar concentrations (a 100- to 10,000-fold improvement over comparable constructs for 1H MRI). We demonstrate the use of GVs as heterologously expressed indicators of gene expression and chemically targeted exogenous labels in MRI experiments performed on living cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GVs produce HyperCEST contrast at picomolar concentrations.
Figure 2: GVs in different species of bacteria have distinct HyperCEST saturation frequencies, which enables multiplexed imaging.
Figure 3: GVs as genetic reporters and biosensors.

Similar content being viewed by others

References

  1. Lippincott-Schwartz, J. & Patterson, G. H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Lauterbur, P. C. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973).

    Article  CAS  Google Scholar 

  3. Gilad, A. A., Winnard, P. T. Jr, van Zijl, P. C. & Bulte, J. W. Developing MR reporter genes: promises and pitfalls. NMR Biomed. 20, 275–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Shapiro, M. G., Atanasijevic, T., Faas, H., Westmeyer, G. G. & Jasanoff, A. Dynamic imaging with MRI contrast agents: quantitative considerations. Magn. Reson. Imaging 24, 449–462 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R. & Piston, D. W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Albert, M. S. et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370, 199–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Ardenkjaer-Larsen, J. H. et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl Acad. Sci. USA 100, 10158–10163 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Walker, T. G. & Happer, W. Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 69, 629–642 (1997).

    Article  CAS  Google Scholar 

  9. Driehuys, B. et al. Imaging alveolar–capillary gas transfer using hyperpolarized 129Xe MRI. Proc. Natl Acad. Sci. USA 103, 18278–18283 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. Swanson, S. D. et al. Brain MRI with laser-polarized 129Xe. Magn Reson Med 38, 695–698 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Swanson, S. D., Rosen, M. S., Coulter, K. P., Welsh, R. C. & Chupp, T. E. Distribution and dynamics of laser-polarized 129Xe magnetization in vivo. Magn. Reson. Med. 42, 1137–1145 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Wolber, J., Cherubini, A., Dzik-Jurasz, A. S., Leach, M. O. & Bifone, A. Spin-lattice relaxation of laser-polarized xenon in human blood. Proc. Natl Acad. Sci. USA 96, 3664–3669 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, X. et al. Reinvestigating hyperpolarized 129Xe longitudinal relaxation time in the rat brain with noise considerations. NMR Biomed. 21, 217–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Spence, M. M. et al. Functionalized xenon as a biosensor. Proc. Natl Acad. Sci. USA 98, 10654–10657 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Bartik, K., Luhmer, M., Dutasta, J-P., Collet, A. & Reisse, J. 129Xe and 1H NMR study of the reversible trapping of xenon by cryptophane-A in organic solution. J. Am. Chem. Soc. 120, 784–791 (1998).

    Article  CAS  Google Scholar 

  16. Huber, G. et al. Water soluble cryptophanes showing unprecedented affinity for xenon: candidates as NMR-based biosensors. J. Am. Chem. Soc. 128, 6239–6246 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Stevens, T. K., Ramirez, R. M. & Pines, A. Nanoemulsion contrast agents with sub-picomolar sensitivity for xenon NMR. J. Am. Chem. Soc. 135, 9576–9579 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Spence, M. M. et al. Development of a functionalized xenon biosensor. J. Am. Chem. Soc. 126, 15287–15294 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Schroder, L., Lowery, T. J., Hilty, C., Wemmer, D. E. & Pines, A. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314, 446–449 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. Schroder, L. et al. Temperature response of 129Xe depolarization transfer and its application for ultrasensitive NMR detection. Phys. Rev. Lett. 100, 257603 (2008).

  21. Meldrum, T. et al. A xenon-based molecular sensor assembled on an MS2 viral capsid scaffold. J. Am. Chem. Soc. 132, 5936–5937 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Bai, Y., Hill, P. A. & Dmochowski, I. J. Utilizing a water-soluble cryptophane with fast xenon exchange rates for picomolar sensitivity NMR measurements. Anal. Chem. 84, 9935–9941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taratula, O. & Dmochowski, I. J. Functionalized 129Xe contrast agents for magnetic resonance imaging. Curr. Opin. Chem. Biol. 14, 97–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Taratula, O., Hill, P. A., Bai, Y., Khan, N. S. & Dmochowski, I. J. Shorter synthesis of trifunctionalized cryptophane-A derivatives. Org. Lett. 13, 1414–1417 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Palaniappan, K. K. et al. Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. Angew. Chem. Int. Ed. 52, 4849–4853 (2013).

    Article  CAS  Google Scholar 

  26. Wei, Q. et al. Designing 129Xe NMR biosensors for matrix metalloproteinase detection. J. Am. Chem. Soc. 128, 13274–13283 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Kotera, N. et al. Design and synthesis of new cryptophanes with intermediate cavity sizes. Org. Lett. 13, 2153–2155 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nature Rev. Microbiol. 10, 705–715 (2012).

    Article  CAS  Google Scholar 

  29. Walsby, A. E. Gas vesicles. Microbiol. Rev. 58, 94–144 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Walsby, A. E. Permeability of gas vesicles to perfluorocyclobutane. J. Gen. Microbiol. 128, 1679–1684 (1982).

    CAS  Google Scholar 

  31. Li, N. & Cannon, M. C. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J. Bacteriol. 180, 2450–2458 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Abragam, A. Principles of Nuclear Magnetism (Oxford Univ. Press, 1983).

    Google Scholar 

  33. Anet, F. A. L. & Basus, V. J. Limiting equations for exchange broadening in two-site NMR systems with very unequal populations. J. Magn. Reson. (1969) 32, 339–343 (1978).

    Article  CAS  Google Scholar 

  34. Soesbe, T. C., Merritt, M. E., Green, K. N., Rojas-Quijano, F. A. & Sherry, A. D. T2 exchange agents: a new class of paramagnetic MRI contrast agent that shortens water T2 by chemical exchange rather than relaxation. Magn. Reson. Med. 66, 1697–1703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mazzanti, M. L. et al. Distribution of hyperpolarized xenon in the brain following sensory stimulation: preliminary MRI findings. PLoS One 6, e21607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, X. et al. MRI of stroke using hyperpolarized 129Xe. NMR Biomed. 24, 170–175 (2011).

    Article  PubMed  CAS  Google Scholar 

  37. Peled, S. et al. Determinants of tissue delivery for 129Xe magnetic resonance in humans. Magn. Reson. Med. 36, 340–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Martin, C. C. et al. The pharmacokinetics of hyperpolarized xenon: implications for cerebral MRI. J. Magn. Reson. Imag. 7, 848–854 (1997).

    Article  CAS  Google Scholar 

  39. Ruiz-Cabello, J., Barnett, B. P., Bottomley, P. A. & Bulte, J. W. M. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed. 24, 114–129 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Gilad, A. A. et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nature Biotechnol. 25, 217–219 (2007).

    Article  CAS  Google Scholar 

  41. McMahon, M. T. et al. New ‘multicolor’ polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn. Reson. Med. 60, 803–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zabow, G., Dodd, S., Moreland, J. & Koretsky, A. Micro-engineered local field control for high-sensitivity multispectral MRI. Nature 453, 1058–1063 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nature Rev. Genet. 11, 367–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Mandel, M. J. Models and approaches to dissect host–symbiont specificity. Trends Microbiol. 18, 504–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Piwnica-Worms, D., Schuster, D. P. & Garbow, J. R. Molecular imaging of host–pathogen interactions in intact small animals. Cell Microbiol. 6, 319–331 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Forbes, N. S. Engineering the perfect (bacterial) cancer therapy. Nature Rev. Cancer 10, 785–794 (2010).

    Article  CAS  Google Scholar 

  47. Schaffer, D. V., Koerber, J. T. & Lim, K. I. Molecular engineering of viral gene delivery vehicles. Annu. Rev. Biomed. Eng. 10, 169–194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stuart, E. S., Morshed, F., Sremac, M. & DasSarma, S. Cassette-based presentation of SIV epitopes with recombinant gas vesicles from halophilic archaea. J. Biotechnol. 114, 225–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Duhamel, G. et al. Xenon-129 MR imaging and spectroscopy of rat brain using arterial delivery of hyperpolarized xenon in a lipid emulsion. Magn. Reson. Med. 46, 208–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Cleveland, Z. I. et al. In vivo MR imaging of pulmonary perfusion and gas exchange in rats via continuous extracorporeal infusion of hyperpolarized 129Xe. PLoS one 7, e31306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Dao for assistance with NMR measurements, M. Cannon for providing the pNL29 plasmid and R. Zalpuri and K. McDonald for assistance with electron microscopy. This work was supported by the Miller Research Fellowship and Burroughs Wellcome Career Award at the Scientific Interface (M.G.S.), California Institute For Regenerative Medicine grant RT2-02022 (D.V.S.) and Department of Energy contract DE-AC02-05CH11231 (A.P., V.S.B).

Author information

Authors and Affiliations

Authors

Contributions

M.G.S. conceived and directed the study. M.G.S., R.M.R., V.S.B. and L.J.S. designed the experiments. M.G.S., R.M.R., J.S. and L.J.S. performed NMR measurements. M.G.S. prepared the GVs, bacteria and mammalian cells. M.G.S. and G.S. generated E. coli genetic constructs. M.G.S., R.M.R. and J.S. analysed the data. M.G.S. wrote the manuscript with interpretation and input from all authors. M.G.S. and V.S.B. provided supervision with input from A.P. and D.V.S.

Corresponding authors

Correspondence to Mikhail G. Shapiro or Vikram S. Bajaj.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, M., Ramirez, R., Sperling, L. et al. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nature Chem 6, 629–634 (2014). https://doi.org/10.1038/nchem.1934

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing