Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxidation of ethane to ethanol by N2O in a metal–organic framework with coordinatively unsaturated iron(II) sites

This article has been updated

Abstract

Enzymatic haem and non-haem high-valent iron–oxo species are known to activate strong C–H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron–oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)–oxo compounds. In particular, although nature's non-haem iron(IV)–oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal–organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal–organic framework Fe2(dobdc) (dobdc4− = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C–H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)–oxo species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of bare and N2O-dosed Fe2(dobdc) (1).
Figure 2: Preparation, spectroscopic characterization and structure of Fe2(OH)2(dobdc).
Figure 3: N2O activation and reactivity of Fe2(dobdc) in the oxidation of ethane and 1,4-cyclohexadiene.
Figure 4: Structure and qualitative MO diagram of Fe2(O)2(dobdc) (4).

Similar content being viewed by others

Change history

  • 05 June 2014

    In the version of this Article originally published online, in the section 'Oxidation of ethane to give ethanol' the two 1H NMR spectra related to the reaction products resulting from flowing an N2O:ethane:Ar mixture (10:25:65) over Fe2(dobdc) and Fe0.1Mg1.9(dobdc) at 75 °C were not included in the Supplementary Information. These spectra have now been added as Supplementary Figs 21 and 22, respectively, and the Article amended to include appropriate citations to them. The authors have also added a sentence into the Acknowledgements: "Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357."

References

  1. Arakawa, H. et al. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem. Rev. 101, 953–996 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Bergman, R. G. Organometallic chemistry: C–H activation. Nature 446, 391–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. International Energy Agency World Energy Outlook Special Report 2011 http://www.worldenergyoutlook.org/goldenageofgas (2011).

  4. Himes, R. A. & Karlin, K. D. Copper–dioxygen complex mediated C–H bond oxygenation: relevance for particulate methane monooxygenase (pMMO). Curr. Opin. Chem. Biol. 13, 119–131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Costas, M., Mehn, M. P., Jensen, M. P. & Que, L. Jr. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem. Rev. 104, 939–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Meunier, B., de Visser, S. P. & Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem. Rev. 104, 3947–3980 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Wallar, B. J. & Lipscomb, J. D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev. 96, 2625–2658 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Hohenberger, J., Ray, K. & Meyer, K. The biology and chemistry of high-valent iron–oxo and iron–nitrido complexes. Nature Commun. 3, 720 (2012).

    Article  CAS  Google Scholar 

  9. Nam, W. High-valent iron(IV)–oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc. Chem. Res. 40, 522–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Que, L. Jr The road to non-heme oxoferryls and beyond. Acc. Chem. Res. 40, 493–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Watton, S. P., Taylor, C. M., Kloster, G. M. & Bowman, S. C. Coordination complexes in sol–gel silica materials. Prog. Inorg. Chem. 51, 333–420 (2002).

    Google Scholar 

  12. Leadbeater, N. E. & Marco, M. Preparation of polymer-supported ligands and metal complexes for use in catalysis. Chem. Rev. 102, 3217–3274 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Panov, G. I. et al. Iron complexes in zeolites as a new model of methane monooxygenase. React. Kinet. Catal. Lett. 61, 251–258 (1997).

    Article  CAS  Google Scholar 

  14. Zecchina, A., Rivallan, M., Berlier, G., Lamberti, C. & Richhiardi, G. Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts. Phys. Chem. Chem. Phys. 9, 3483–3499 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Yoon, J. W. et al. Controlled reducibility of a metal–organic framework with coordinatively unsaturated sites for preferential gas sorption. Angew. Chem. Int. Ed. 49, 5949–5952 (2010).

    Article  CAS  Google Scholar 

  16. Ma, S., Yuan, D., Chang, J-S. & Zhou, H-C. Investigation of gas adsorption performances and H2 affinities of porous metal–organic frameworks with different entatic metal centers. Inorg. Chem. 48, 5398–5402 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Sumida, K. et al. Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe–BTT) discovered via high-throughput methods. Chem. Sci. 1, 184–191 (2010).

    Article  CAS  Google Scholar 

  18. Bloch, E. D. et al. Selective binding of O2 over N2 in a redox-active metal–organic framework with open iron(II) coordination sites. J. Am. Chem. Soc. 133, 14814–14822 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Bloch, E. D. et al. Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335, 1606–1610 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Märcz, M., Johnsen, R. E., Dietzel, P. D. C. & Fjellvåg, H. The iron member of the CPO-27 coordination polymer series: synthesis, characterization, and intriguing redox properties. Micropor. Mesopor. Mater. 157, 62–74 (2012).

    Article  CAS  Google Scholar 

  21. Bhattacharjee, S. et al. Solvothermal synthesis of Fe-MOF-74 and its catalytic properties in phenol hydroxylation. J. Nanosci. Nanotechnol. 10, 135–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Tolman, W. B. Binding and activation of N2O at transition-metal centers: recent mechanistic insights. Angew. Chem. Int. Ed. 49, 1018–1024 (2010).

    Article  CAS  Google Scholar 

  23. Piro, N. A., Lichterman, M. F., Harman, W. H. & Chang, C. J. A structurally characterized nitrous oxide complex of vanadium. J. Am. Chem. Soc. 133, 2108–2111 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  25. Delabie, A., Vinckier, C., Flock, M. & Pierloot, K. Evaluating the activation barriers for transition metal N2O reactions. J. Phys. Chem. A 105, 5479–5485 (2001).

    Article  CAS  Google Scholar 

  26. Heyden, A., Peters, B. & Bell, A. T. Comprehensive DFT study of nitrous oxide decomposition over Fe-ZSM-5. J. Phys. Chem. B. 109, 1857–1873 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Bottomley, F. & Brooks, W. V. F. Mode of bonding of dinitrogen oxide (nitrous oxide) in (dinitrogenoxide)pentaammineruthenium. Inorg. Chem. 16, 501–502 (1977).

    Article  CAS  Google Scholar 

  28. Pamplin, C. B., Ma, E. S. F., Safari, N., Rettig, S. J. & James, B. R. The nitrous oxide complex, RuCl2(η1-N2O)(P–N)(PPh3) (P–N=[o-(N,N-dimethylamino)phenyl]diphenylphosphine); low temperature conversion of N2O to N2 and O2 . J. Am. Chem. Soc. 123, 8596–8597 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Paulat, F. et al. Spectroscopic properties and electronic structure of pentammineruthenium(II) dinitrogen oxide and corresponding nitrosyl complexes: binding mode of N2O and reactivity. Inorg. Chem. 43, 6979–6994 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899–926 (1998).

    Article  Google Scholar 

  31. Macbeth, C. E. et al. O2 activation by nonheme iron complexes: a monomeric Fe(III)–oxo complex derived from O2 . Science 289, 938–941 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Dolphin, D. H., Sams, J. R., Tsin, T. B. & Wong, K. L. Mössbauer–Zeeman spectra of some octaethylporphyrinato- and tetraphenylporphinatoiron(III) complexes. J. Am. Chem. Soc. 100, 1711–1718 (1978).

    Article  CAS  Google Scholar 

  33. Que, L. Jr & True, A. E. Dinuclear iron- and manganese-oxo sites in biology. Prog. Inorg. Chem. 38, 97–200 (1990).

    CAS  Google Scholar 

  34. Soo, H. S., Komor, A. C., Iavarone, A. T. & Chang, C. J. A hydrogen-bond facilitated cycle for oxygen reduction by an acid- and base-compatible iron platform. Inorg. Chem. 48, 10024–10035 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Laarhoven, L. J. J., Mulder, P. & Wayner, D. D. M. Determination of bond dissociation enthalpies in solution by photoacoustic calorimetry. Acc. Chem. Res. 32, 342–349 (1999).

    Article  CAS  Google Scholar 

  36. Goldsmith, C. R., Jonas, R. T. & Stack, T. D. P. C–H bond activation by a ferric methoxide complex: modeling the rate-determining step in the mechanism of lipoxygenase. J. Am. Chem. Soc. 124, 83–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Goldsmith, C. R. & Stack, T. D. P. Hydrogen atom abstraction by a mononuclear ferric hydroxide complex: insights into the reactivity of lipoxygenase. Inorg. Chem. 45, 6048–6055 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Starokon, E. V., Parfenov, M. V., Pirutko, L. V., Abornev, S. I. & Panov, G. I. Room-temperature oxidation of methane by α-oxygen and extraction of products from the FeZSM-5 surface. J. Phys. Chem. C 115, 2155–2161 (2011).

    Article  CAS  Google Scholar 

  39. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Franchini, C. et al. Maximally localized Wannier functions in LaMnO3 within PBE+U, hybrid functionals and partially self-consistent GW: an efficient route to construct ab initio tight-binding parameters for eg perovskites. J. Phys. Condens. Mater. 24, 235602/1-17 (2012).

    Google Scholar 

  41. Verma, P., Xu, X. & Truhlar, D. G. Adsorption on Fe-MOF-74 for C1–C3 hydrocarbon separation. J. Phys. Chem. C 117, 12648–12660 (2013).

    Article  CAS  Google Scholar 

  42. Maurice, R. et al. Single-ion magnetic anisotropy and isotropic magnetic couplings in the metal–organic framework Fe2(dobdc). Inorg. Chem. 52, 9379–9389 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Andersson, K., Malmqvist, P-Å. & Roos, B. O. Second order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96, 1218–1226 (1992).

    Article  CAS  Google Scholar 

  44. Andersson, K., Malmqvist, P. A., Roos, B. O., Sadlej, A. J. & Wolinski, K. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 94, 5483–5488 (1990).

    Article  CAS  Google Scholar 

  45. Shaik, S., Hirao, H. & Kumar, D. Reactivity of high-valent iron–oxo species in enzymes and synthetic reagents: a tale of many states. Acc. Chem. Res. 40, 532–542 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. England, J. et al. The crystal structure of a high-spin oxoiron(IV) complex and characterization of its self-decay pathway. J. Am. Chem. Soc. 132, 8635–8644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lacy, D. C. et al. Formation, structure, and EPR detection of a high spin FeIV–oxo species derived from either an FeIII–oxo or FeIII–OH complex. J. Am. Chem. Soc. 132, 12188–12190 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. England, J. et al. A more reactive trigonal–bipyramidal high-spin oxoiron(IV) complex with a cis-labile site. J. Am. Chem. Soc. 133, 11880–11883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bigi, J. P. et al. A high-spin iron(IV)–oxo complex supported by a trigonal nonheme pyrrolide platform. J. Am. Chem. Soc. 134, 1536–1542 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Pestovsky, O. et al. Aqueous FeIV=O: spectroscopic identification and oxo-group exchange. Angew. Chem. Int. Ed. 44, 6871–6874 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Synthesis, basic characterization experiments and all of the theoretical work were supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under award DE-FG02-12ER16362. Reactivity studies were supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under US Department of Energy Contract No. DE-AC02-05CH11231. Work at the Molecular Foundry, and XAS experiments performed at the Advanced Light Source (BL 10.3.2), Berkeley, were supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. X-ray diffraction experiments were performed at the Advanced Photon Source at Argonne National Laboratory (17-BM-B). Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. S.B., F.B. and V.C. acknowledge financial support from the Ateneo Project 2011 ORTO11RRT5. We also thank the National Science Foundation for providing graduate fellowship support (D.J.X. and J.A.M.). In addition, we are grateful for the support of E.D.B. through a Gerald K. Branch fellowship in chemistry, P.V. through a Phillips 66 Excellence Fellowship and M.R.H. through the National Institute of Standards and Technology/National Research Council Fellowship Program. We thank S. Chavan for help with the infrared spectroscopy experiments and fruitful discussion.

Author information

Authors and Affiliations

Authors

Contributions

D.J.X., E.D.B. and J.R.L. planned and executed the synthesis, characterization and reactivity studies. J.A.M., W.L.Q., M.R.H. and C.M.B. analysed the powder neutron and X-ray diffraction data. N.P. and P.V. performed the cluster DFT calculations. J.B. and K.L. performed the periodic DFT calculations. A.L.D. performed the CASSCF/PT2 calculations. D.G.T. and L.G. conceived and managed the computational efforts. F.B., V.C. and S.B. carried out the in situ transmission Fourier transform infrared studies, and J.Y. supervised EXAFS analysis. All authors participated in the preparation of the manuscript.

Corresponding author

Correspondence to Jeffrey R. Long.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4068 kb)

Supplementary information

Crystallographic data for compound 1+0.35 eq. N2O (CIF 209 kb)

Supplementary information

Crystallographic data for compound 1+0.6 eq. N2O (CIF 208 kb)

Supplementary information

Crystallographic data for compound 1+1.25 eq. N2O (CIF 209 kb)

Supplementary information

Crystallographic data for compound 2 at 100 K (CIF 317 kb)

Supplementary information

Crystallographic data for compound 2 at 298 K (CIF 321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, D., Bloch, E., Mason, J. et al. Oxidation of ethane to ethanol by N2O in a metal–organic framework with coordinatively unsaturated iron(II) sites. Nature Chem 6, 590–595 (2014). https://doi.org/10.1038/nchem.1956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing