Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids

Abstract

Soft materials that exhibit stimuli-responsive behaviour under aqueous conditions (such as supramolecular hydrogels composed of self-assembled nanofibres) have many potential biological applications. However, designing a macroscopic response to structurally complex biochemical stimuli in these materials still remains a challenge. Here we show that redox-responsive peptide-based hydrogels have the ability to encapsulate enzymes and still retain their activities. Moreover, cooperative coupling of enzymatic reactions with the gel response enables us to construct unique stimuli-responsive soft materials capable of sensing a variety of disease-related biomarkers. The programmable gel–sol response (even to biological samples) is visible to the naked eye. Furthermore, we built Boolean logic gates (OR and AND) into the hydrogel–enzyme hybrid materials, which were able to sense simultaneously plural specific biochemicals and execute a controlled drug release in accordance with the logic operation. The intelligent soft materials that we have developed may prove valuable in future medical diagnostics or treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BAmoc–peptide hydrogels.
Figure 2: H2O2-response sensitivity of BPmoc–peptide hydrogels.
Figure 3: OxidaseBPmoc-F3 hybrid gels.
Figure 4: Serial coupling of enzymatic reactions in the BPmoc-F3 hydrogel for expansion of a chemical-stimuli response.
Figure 5: Reduction-responsive hydrogel and its combination with enzymes.
Figure 6: AND or OR logic-gate response of supramolecular hydrogels encapsulating multiple enzymes.

Similar content being viewed by others

References

  1. de Gennes, P-G. Soft matter (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 31, 842–845 (1992).

    Google Scholar 

  2. Holtz, J. H. & Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997).

    CAS  PubMed  Google Scholar 

  3. Qiu, Y. & Park, K. Environment-sensitive hydrogel for drug delivery. Adv. Drug Deliv. Rev. 53, 321–339 (2001).

    CAS  PubMed  Google Scholar 

  4. Miyata, T., Uragami, T. & Nakamae, K. Biomolecule-sensitive hydrogel. Adv. Drug Deliv. Rev. 54, 79–98 (2002).

    CAS  PubMed  Google Scholar 

  5. Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol. 23, 47–55 (2005).

    CAS  Google Scholar 

  6. Burdick, J. A. & Murphy, W. L. Moving from static to dynamic complexity in hydrogel design. Nature Commun. 3, 1269 (2012).

    Google Scholar 

  7. Alberts, B. et al. Molecular Biology of the Cell 5th edn (Garland Science, 2008).

    Google Scholar 

  8. Lehninger, A., Nelson, D. L. & Cox, M. M. Lehninger Principles of Biochemistry 5th edn (W. H. Freeman, 2008).

    Google Scholar 

  9. Alberti, K. G. M. M. & Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Med. 15, 539–553 (1998).

    CAS  PubMed  Google Scholar 

  10. Wallace, K. L., Riedel, A. A., Joseph-Ridge, N. & Wortmann, R. Increasing prevalence of gout and hyperuricemia over 10 years among older adults in a managed care population. J. Rheumatol. 31, 1582–1587 (2004).

    PubMed  Google Scholar 

  11. Hershfielda, M. S. et al. Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an antioxidant in vivo. Proc. Natl Acad. Sci. USA 107, 14351–14356 (2010).

    Google Scholar 

  12. Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Estroff, L. A. & Hamilton, A. D. Water gelation by small organic molecules. Chem. Rev. 104, 1201–1217 (2004).

    CAS  PubMed  Google Scholar 

  14. de Loos, M., Feringa, B. L. & van Esch, J. H. Design and application of self-assembled low molecular weight hydrogels. Eur. J. Org. Chem. 2005, 3615–3631 (2005).

    Google Scholar 

  15. Weiss, R. G. & Terech, P. Molecular Gels: Materials with Self-Assembled Fibrillar Networks Ch. 17, Ch. 18 (Springer: 2006).

    Google Scholar 

  16. Yang, Z. & Xu, B. Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. J. Mater. Chem. 17, 2385–2393 (2007).

    CAS  Google Scholar 

  17. Hirst, A. R., Escuder, B., Miravet, J. F. & Smith, D. K. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem. Int. Ed. 47, 8002–8018 (2008).

    CAS  Google Scholar 

  18. Kiyonaka, S. et al. Semi-wet peptide/protein array using supramolecular hydrogel. Nature Mater. 3, 58–64 (2004).

    CAS  Google Scholar 

  19. Yang, Z. & Xu, B. A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. Chem. Commun. 2424–2425 (2004).

  20. Ikeda, M. et al. Montmorillonite-supramolecular hydrogel hybrid for fluorocolorimetric sensing of polyamines. J. Am. Chem. Soc. 133, 1670–1673 (2011).

    CAS  PubMed  Google Scholar 

  21. Ikeda, M., Ochi, R. & Hamachi, I. Supramolecular hydrogel-based protein and chemosensor array. Lab Chip 10, 3325–3334 (2010).

    CAS  PubMed  Google Scholar 

  22. Holmes, T. C. et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl Acad. Sci. USA 97, 6728–6733 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    CAS  PubMed  Google Scholar 

  24. Haines-Butterick, L. et al. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl Acad. Sci. USA 104, 7791–7796 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Aggeli, A. et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes. Nature 386, 259–262 (1997).

    CAS  PubMed  Google Scholar 

  26. Xu, X-D. et al. Biological glucose metabolism regulated peptide self-assembly as a simple visual biosensor for glucose detection. Macromol. Rapid Commun. 33, 426–431 (2012).

    CAS  PubMed  Google Scholar 

  27. Piepenbrock, M-O. M., Lloyd, G. O., Clarke, N. & Steed, J. W. Metal- and anion-binding supramolecular gels. Chem. Rev. 110, 1960–2004 (2010).

    CAS  PubMed  Google Scholar 

  28. Komatsu, H. et al. Supramolecular hydrogel exhibiting four basic logic gate functions to fine-tune substance release. J. Am. Chem. Soc. 131, 5580–5585 (2009).

    CAS  PubMed  Google Scholar 

  29. Kim, H-J., Lee, J-H. & Lee, M. Stimuli-responsive gels from reversible coordination polymers. Angew. Chem. Int. Ed. 44, 5810–5814 (2005).

    CAS  Google Scholar 

  30. Zhang, Y., Gu, H., Yang, Z. & Xu, B. Supramolecular hydrogels respond to ligand−receptor interaction. J. Am. Chem. Soc. 125, 13680–13681 (2003).

    CAS  PubMed  Google Scholar 

  31. Zhang, X. et al. Rational design of a tetrameric protein to enhance interactions between self-assembled fibers gives molecular hydrogels. Angew. Chem. Int. Ed. 51, 4388–4392 (2012).

    Google Scholar 

  32. Yang, Z., Liang, G. & Xu, B. Enzymatic control of the self-assembly of small molecules: a new way to generate supramolecular hydrogels. Soft Matter 3, 515–520 (2007).

    CAS  PubMed  Google Scholar 

  33. Ulijn, R. V. Enzyme-responsive materials: a new class of smart biomaterials. J. Mater. Chem. 16, 2217–2225 (2006).

    CAS  Google Scholar 

  34. Hirst, A. R. et al. Biocatalytic induction of supramolecular order. Nature Chem. 2, 1089–1094 (2010).

    CAS  Google Scholar 

  35. Ikeda, M., Tanida, T., Yoshii, T. & Hamachi, I. Rational molecular design of stimulus-responsive supramolecular hydrogels based on dipeptides. Adv. Mater. 23, 2819–2822 (2011).

    CAS  PubMed  Google Scholar 

  36. Bowerman, C. J. & Nilsson, B. L. A reductive trigger for peptide self-assembly and hydrogelation. J. Am. Chem. Soc. 132, 9526–9527 (2010).

    CAS  PubMed  Google Scholar 

  37. Miao, X. et al. Switchable catalytic activity: selenium-containing peptides with redox-controllable self-assembly properties. Angew. Chem. Int. Ed. 52, 7781–7785 (2013).

    CAS  Google Scholar 

  38. Sun, Z. et al. Ferrocenoyl phenylalanine: a new strategy toward supramolecular hydrogels with multistimuli responsive properties. J. Am. Chem. Soc. 135, 13379–13386 (2013).

    CAS  PubMed  Google Scholar 

  39. Chen, L., Revel, S., Morris, K., Serpell, L. C. & Adams, D. J. Effect of molecular structure on the properties of naphthalene–dipeptide hydrogelators. Langmuir 26, 13466–13471 (2010).

    CAS  PubMed  Google Scholar 

  40. Lippert, A-R., Van de Bittner, G. C. & Chang, C. J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res. 44, 793–804 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Google Scholar 

  42. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).

    CAS  Google Scholar 

  43. Morris, K. L. et al. Chemically programmed self-sorting of gelator networks. Nature Commun. 4, 1480 (2013).

    Google Scholar 

  44. Swanekamp, R. J., DiMaio, J. T. M., Bowerman, C. J. & Nilsson, B. L. Coassembly of enantiomeric amphipathic peptides into amyloid-inspired rippled β-sheet fibrils. J. Am. Chem. Soc. 134, 5556–5559 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Buerkle, L. E., Li, Z., Jamieson, A. M. & Rowan, S. J. Tailoring the properties of guanosine-based supramolecular hydrogels. Langmuir 25, 8833–8840 (2009).

    CAS  PubMed  Google Scholar 

  46. Schneider, H-J., Tianjun, L., Lomadze, N. & Palm, B. Cooperativity in a chemomechanical polymer: a chemically induced macroscopic logic gate. Adv. Mater. 16, 613–615 (2004).

    CAS  Google Scholar 

  47. De Silva, A. P. & Uchiyama, S. Molecular logic and computing. Nature Nanotech. 2, 399–410 (2007).

    CAS  Google Scholar 

  48. Katz, E. & Privman, V. Enzyme-based logic systems for information processing. Chem. Soc. Rev. 39, 1835–1857 (2010).

    CAS  PubMed  Google Scholar 

  49. Win, M. N. & Smolke, C. D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the JST (Japan Science and Technology Agency), the CREST (Core Research for Evolutionary Science and Technology) program, a Grant-in-Aid for Young Scientists (A) (No. 23681022), the Scientific Research on the Innovative Areas ‘Molecular Robotics’ (No. 25104512), the global Centre of Excellence program, ‘Integrated Materials Science’ of the Ministry of Education, Culture, Science, Sports and Technology (Japan). M.I. thanks the Tokuyama Science Foundation for financial support. We acknowledge Y. Chujo and N. Kitamura (Kyoto University) for allowing us to use the transmission electron microscope and for their support, K. Kuwata (Kyoto University) for high-resolution mass spectroscopy measurements, E. Kusaka (Kyoto University) for NMR measurements and M. Ichihashi and M. Wagatsuma (Initium, ULVAC) for quartz-crystal microbalance measurements. We thank E. Ashihara (Kyoto Pharmaceutical University) and Y. Takaoka (Kyoto University) for their help in taking blood samples. T.Y. acknowledges the JSPS (Japan Society for the Promotion of Science) Research Fellowship for Young Scientists.

Author information

Authors and Affiliations

Authors

Contributions

M.I., T.T., T.Y., K.K., S.O. and K.U. performed the experiments and M.I. and I.H. conceived the project. The paper was written by M.I. and I.H. and edited by all the co-authors.

Corresponding author

Correspondence to Itaru Hamachi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, M., Tanida, T., Yoshii, T. et al. Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids. Nature Chem 6, 511–518 (2014). https://doi.org/10.1038/nchem.1937

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing