Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry

Abstract

Criegee intermediates, which are carbonyl oxides produced when ozone reacts with unsaturated hydrocarbons, play an important role in the formation of OH and organic acids in the atmosphere, but they have eluded direct detection until recently. Reactions that involve Criegee intermediates are not understood fully because data based on their direct observation are limited. We used transient infrared absorption spectroscopy to probe directly the decay kinetics of formaldehyde oxide (CH2OO) and found that it reacts with itself extremely rapidly. This fast self-reaction is a result of its zwitterionic character. According to our quantum-chemical calculations, a cyclic dimeric intermediate that has the terminal O atom of one CH2OO bonded to the C atom of the other CH2OO is formed with large exothermicity before further decomposition to 2H2CO + O2(1Δg). We suggest that the inclusion of this previously overlooked rapid reaction in models may affect the interpretation of previous laboratory experiments that involve Criegee intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plots of [CH2OO]−1 versus reaction time.
Figure 2: Schematic energy diagram for the CH2OO + CH2OO reaction paths.
Figure 3: Schematic energy diagram for the CH2OO + I(2P3/2) reaction path.
Figure 4: Geometries of CH2OO and (CH2OO)2 optimized at the B3LYP/aug-cc-pVTZ-pp level.
Figure 5: Comparison of experimental decay profiles of CH2OO with those simulated using a kinetic model.

Similar content being viewed by others

References

  1. Johnson, D. & Marston, G. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. Chem. Soc. Rev. 37, 699–716 (2008).

    CAS  PubMed  Google Scholar 

  2. Calvert, J. G. et al. The Mechanisms of Atmospheric Oxidation of the Alkenes 172–335 (Oxford Univ. Press, 2000).

    Google Scholar 

  3. Horie, O. & Moortgat, G. K. Gas-phase ozonolysis of alkenes. Recent advances in mechanistic investigations. Acc. Chem. Res. 31, 387–396 (1998).

    CAS  Google Scholar 

  4. Sander, W. Carbonyl oxides: zwitterions or diradicals? Angew. Chem. Int. Ed. Engl. 29, 344–354 (1990).

    Google Scholar 

  5. Bunnelle, W. H. Preparation, properties, and reactions of carbonyl oxides. Chem. Rev. 91, 335–362 (1991).

    CAS  Google Scholar 

  6. Hatakeyama, S. & Akimoto, H. Reactions of Criegee intermediates in the gas phase. Res. Chem. Intermed. 20, 503–524 (1994).

    CAS  Google Scholar 

  7. Criegee, R. & Wenner, G. Die ozonisierung des 9,10-oktalins. Liebigs Ann. Chem. 564, 9–15 (1949).

    CAS  Google Scholar 

  8. Taatjes, C. A. et al. Direct observation of the gas-phase Criegee intermediate (CH2OO). J. Am. Chem. Soc. 130, 11883–11885 (2008).

    CAS  PubMed  Google Scholar 

  9. Welz, O. et al. Direct kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2 . Science 335, 204–207 (2012).

    CAS  PubMed  Google Scholar 

  10. Beames, J. M., Liu, F., Lu, L. & Lester, M. I. Ultraviolet spectrum and photochemistry of the simplest Criegee intermediate CH2OO. J. Am. Chem. Soc. 134, 20045–20048 (2012).

    CAS  PubMed  Google Scholar 

  11. Su, Y-T., Huang, Y-H., Witek, H. A. & Lee, Y-P. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO. Science 340, 174–176 (2013).

    CAS  PubMed  Google Scholar 

  12. Nakajima, M. & Endo, Y. Determination of the molecular structure of the simplest Criegee intermediate CH2OO. J. Chem. Phys. 139, 101103 (2013).

    PubMed  Google Scholar 

  13. Nguyen, M. T., Ngyuen, T. L., Ngan, V. T. & Ngyuen, H. M. T. Heats of formation of the Criegee formaldehyde oxide and dioxirane. Chem. Phys. Lett. 448, 183–188 (2007).

    CAS  Google Scholar 

  14. Anglada, J. M., Gonzalez, J. & Torrent-Sucarrat, M. Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water. Phys. Chem. Chem. Phys. 13, 13034–13045 (2011).

    CAS  PubMed  Google Scholar 

  15. Vereecken, L. & Francisco, J. S. Theoretical studies of atmospheric reaction mechanisms in the troposphere. Chem. Soc. Rev. 41, 6259–6293 (2012).

    CAS  PubMed  Google Scholar 

  16. Cremer, D., Gauss, J., Kraka, E., Stanton, J. F. & Bartlett, R. J. A CCSD (T) investigation of carbonyl oxide and dioxirane. Equilibrium geometries, dipole moments, infrared spectra, heats of formation and isomerization energies. Chem. Phys. Lett. 209, 547–556 (1993).

    CAS  Google Scholar 

  17. Fang, D-C. & Fu, X-Y. CASSCF and CAS+1+2 studies on the potential energy surface and the rate constants for the reactions between CH2 and O2 . J. Phys. Chem. A 106, 2988–2993 (2002).

    CAS  Google Scholar 

  18. Cool, T. A., Wang, J., Nakajima, K., Taatjes, C. A. & McIlroy, A. Photoionization cross sections for reaction intermediates in hydrocarbon combustion. Int. J. Mass Spectrom. 247, 18–27 (2005).

    CAS  Google Scholar 

  19. Sander, S. P. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies (Evaluation Number 14, JPL Publication 02-25, 2003).

    Google Scholar 

  20. Mössinger, J. C., Shallcross, D. E. & Cox, R. A. UV-vis absorption cross-sections and atmospheric lifetimes of CH2Br2, CH2I2 and CH2BrI. J. Chem. Soc. Faraday Trans. 94, 1391–1396 (1998).

    Google Scholar 

  21. Vogt, R., Sander, R., Glasow, R. V. & Crutzen, P. J. Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: a model study. J. Atmos. Chem. 32, 375–395 (1999).

    CAS  Google Scholar 

  22. Saiz-Lopez, A. et al. Atmospheric chemistry of iodine. Chem. Rev. 112, 1773–1804 (2012).

    CAS  PubMed  Google Scholar 

  23. Rienstra-Kiracofe, J. C., Allen, W. D. & Schaefer, H. F. III . The C2H5 + O2 reaction mechanism: high-level ab initio characterizations. J. Phys. Chem. A 104, 9823–9840 (2000).

    Google Scholar 

  24. Liang, Y-N., Li, J., Wang, Q-D., Wang, F. & Li, X-Y. Computational study of the reaction mechanism of the methylperoxy self-reaction. J. Phys. Chem. A 115, 13534–13541 (2011).

    CAS  PubMed  Google Scholar 

  25. Vereecken, L., Harder, H. & Novelli, A. The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere. Phys. Chem. Chem. Phys. 14, 14682–14695 (2012).

    CAS  PubMed  Google Scholar 

  26. Kee, R. J., Rupley, F. M. & Miller, J. A. Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics Sandia Report SAND89-8009B (Sandia National Laboratories, 1995).

  27. Masaki, A., Tsunashima, S. & Washida, N. Rate constants for reactions of substituted methyl radicals (CH2OCH3, CH2NH2, CH2I, and CH2CN) with O2 . J. Phys. Chem. 99, 13126–13131 (1995).

    CAS  Google Scholar 

  28. Eskola, A. J., Wojcik-Pastuszka, D., Ratajczak E. & Timonen, R. S. Kinetics of the reactions of CH2Br and CH2I radicals with molecular oxygen at atmospheric temperatures. Phys. Chem. Chem. Phys. 8, 1416–1424 (2006).

    CAS  PubMed  Google Scholar 

  29. Atkinson, R. et al. Summary of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry (2006). http://rpw.chem.ox.ac.uk/IUPACsumm_web_latest.pdf.

  30. Taatjes, C. A. et al. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone. Phys. Chem. Chem. Phys. 14, 10391–10400 (2012).

    CAS  PubMed  Google Scholar 

  31. Neeb, P., Horie, O. & Moortgat, G. K. The ethane-ozone reaction in the gas phase. J. Phys. Chem. A 102, 6778–6785 (1998).

    CAS  Google Scholar 

  32. McFiggans, G. et al. Direct evidence for coastal iodine particles from Laminaria marcroalgae – linkage to emissions of molecular iodine. Atmos. Chem. Phys. 4, 701–713 (2004).

    CAS  Google Scholar 

  33. Gravestock, T. J., Blitz, M. A., Bloss, W. J. & Heard D. E. A multidimensional study of the reaction CH2I + O2: products and atmospheric implications. ChemPhysChem 11, 3928–3941 (2010).

    CAS  PubMed  Google Scholar 

  34. Stone, D., Blitz, M., Daubney, L., Ingham, T. & Seakins, P. CH2OO Criegee biradical yields following photolysis of CH2I2 in O2 . Phys. Chem. Chem. Phys. 15, 19119–19124 (2013).

    CAS  PubMed  Google Scholar 

  35. Cotter, E. S. N., Booth, N. J., Canosa-Mas, C. E. & Wayne, R. P. Release of iodine in the atmospheric oxidation of alkyl iodides and the fates of iodinated alkoxy radicals. Atmos. Environ. 35, 2169–2178 (2001).

    CAS  Google Scholar 

  36. Sehested, J., Ellermann, T. & Nielsen, O. J. A spectrokinetic study of CH2I and CH2IO2 radicals. Int. J. Chem. Kinet. 26, 259–272 (1994).

    CAS  Google Scholar 

  37. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Google Scholar 

  38. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    CAS  Google Scholar 

  39. Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    CAS  Google Scholar 

  40. Peterson, K. A., Shepler, B. C., Figgen, D. & Stoll, H. On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J. Phys. Chem. A 110, 13877–13883 (2006).

    CAS  PubMed  Google Scholar 

  41. Pople, J. A., Head-Gordon, M. & Raghavachari, K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J. Chem. Phys. 87, 5968–5975 (1987).

    CAS  Google Scholar 

  42. Scuseria, G. E. & Schaefer III, H. F. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? J. Chem. Phys. 90, 3700–3703 (1989).

    CAS  Google Scholar 

  43. Gonzalez, C. & Schlegel, H. B. An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989).

    CAS  Google Scholar 

  44. Frisch, M. J. et al. GAUSSIAN 09, Revision A02 (Gaussian, Inc., Wallingford Connecticut, 2009).

    Google Scholar 

  45. Werner, H-J. et al. MOLPRO, version 2009.1. A package of ab initio programs, http://www.molpro.net (University College Cardiff Consultants, Cardiff, UK).

  46. Wardlaw, D. M. & Marcus, R. A. RRKM reaction rate theory for transition states of any looseness. Chem. Phys. Lett. 110, 230–234 (1984).

    CAS  Google Scholar 

  47. Wardlaw, D. M. & Marcus, R. A. Unimolecular reaction rate theory for transition states of partial looseness. II. Implementation and analysis with applications to NO2 and C2H6 dissociations. J. Chem. Phys. 83, 3462–3480 (1985).

    CAS  Google Scholar 

  48. Klippenstein, S. J. Variational optimizations in the Rice–Ramsperger–Kassel–Marcus theory calculations for unimolecular dissociations with no reverse barrier. J. Chem. Phys. 96, 367–371 (1992).

    Google Scholar 

  49. Klippenstein, S. J. & Marcus, R. A. High pressure rate constants for unimolecular dissociation/free radical recombination: determination of the quantum correction via quantum Monte Carlo path integration. J. Chem. Phys. 87, 3410–3417 (1987).

    CAS  Google Scholar 

  50. Klippenstein, S. J., Wagner, A. F., Dunbar, R. C., Wardlaw, D. M. & Robertson, S. H. VARIFLEX Version 1.00 (Argonne National Laboratory, Argonne, Illinois, 1999).

Download references

Acknowledgements

The National Science Council of Taiwan (grants NSC102-2745-M-009-001-ASP and NSC101-2113-M-009-002) and the Ministry of Education, Taiwan (‘ATU Plan’ of the National Chiao Tung University) supported this work. The National Center for High-Performance Computing provided computer time.

Author information

Authors and Affiliations

Authors

Contributions

Y-T.S. performed the experiments and analysed the data, H-Y.L. performed the kinetic simulations and R.P. performed the calculations. H.M. conceived and designed the kinetic analysis. M.C.L. conceived and designed the calculations. Y-P.L. conceived and designed the experiments and wrote a major part of the paper. H.M. and M.C.L. contributed to writing sections of the paper.

Corresponding authors

Correspondence to M. C. Lin or Yuan-Pern Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1818 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, YT., Lin, HY., Putikam, R. et al. Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry. Nature Chem 6, 477–483 (2014). https://doi.org/10.1038/nchem.1890

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing