Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature

Abstract

Carbon nanostructures that feature two-dimensional extended nanosheets are important components for technological applications such as high-performance composites, lithium-ion storage, photovoltaics and nanoelectronics. Chemical functionalization would render such structures better processable and more suited for tailored applications, but typically this is precluded by the high temperatures needed to prepare the nanosheets. Here, we report direct access to functional carbon nanosheets of uniform thickness at room temperature. We used amphiphiles that contain hexayne segments as metastable carbon precursors and self-assembled these into ordered monolayers at the air/water interface. Subsequent carbonization by ultraviolet irradiation in ambient conditions resulted in the quantitative carbonization of the hexayne sublayer. Carbon nanosheets prepared in this way retained their surface functionalization and featured an sp2-rich amorphous carbon structure comparable to that usually obtained on annealing above 800 °C. Moreover, they exhibited a molecularly defined thickness of 1.9 nm, were mechanically self-supporting over several micrometres and had macroscopic lateral dimensions on the order of centimetres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Well-ordered monolayer of the hexayne amphiphile 1 at the air/water interface.
Figure 2: Fitting of the experimental IRRA spectra for a layer of 1 at the air/water interface.
Figure 3: XR measurements as well as GIXD data for a layer of amphiphile 1.
Figure 4: Carbonization process of a film of 1 monitored by IRRA spectroscopy and characterization of the carbonized films by BAM as well as UV/vis and Raman spectroscopy.
Figure 5: SEM and TEM images of carbon nanosheets obtained by carbonization of 1 at the air/water interface after transfer to a holey carbon TEM grid.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  PubMed  Google Scholar 

  2. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  3. Angelova, P. et al. A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes. ACS Nano 7, 6489–6497 (2013).

    CAS  PubMed  Google Scholar 

  4. Matei, D. G. et al. Functional single-layer graphene sheets from aromatic monolayers. Adv. Mater. 25, 4146–4151 (2013).

    CAS  PubMed  Google Scholar 

  5. Guldi, D. M. & Sgobba, V. Carbon nanostructures for solar energy conversion schemes. Chem. Commun. 47, 606–610 (2011).

    CAS  Google Scholar 

  6. Burghard, M., Klauk, H. & Kern, K. Carbon-based field-effect transistors for nanoelectronics. Adv. Mater. 21, 2586–2600 (2009).

    CAS  Google Scholar 

  7. Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011).

    CAS  PubMed  Google Scholar 

  8. Sekitani, T. & Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 22, 2228–2246 (2010).

    CAS  PubMed  Google Scholar 

  9. Unarunotai, S. et al. Conjugated carbon monolayer membranes: methods for synthesis and integration. Adv. Mater. 22, 1072–1077 (2010).

    CAS  PubMed  Google Scholar 

  10. van der Zande, A. M. et al. Large-scale arrays of single-layer graphene resonators. Nano Lett. 10, 4869–4873 (2010).

    CAS  PubMed  Google Scholar 

  11. Ang, P. K. et al. A bioelectronic platform using a graphene–lipid bilayer interface. ACS Nano 4, 7387–7394 (2010).

    CAS  PubMed  Google Scholar 

  12. Georgakilas, V. et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012).

    CAS  PubMed  Google Scholar 

  13. Hoheisel, T. N., Schrettl, S., Szilluweit, R. & Frauenrath, H. Nanostructured carbonaceous materials from molecular precursors. Angew. Chem. Int. Ed. 49, 6496–6515 (2010).

    CAS  Google Scholar 

  14. Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J. & Zamora, F. 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011).

    CAS  PubMed  Google Scholar 

  15. Yuan, C. Z. et al. Hierarchically structured carbon-based composites: design, synthesis and their application in electrochemical capacitors. Nanoscale 3, 529–545 (2011).

    CAS  PubMed  Google Scholar 

  16. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  PubMed  Google Scholar 

  17. Sun, Z. et al. Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010).

    CAS  PubMed  Google Scholar 

  18. Liu, H. T. et al. Photochemical reactivity of graphene. J. Am. Chem. Soc. 131, 17099–17101 (2009).

    CAS  PubMed  Google Scholar 

  19. Sinitskii, A. et al. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4, 1949–1954 (2010).

    CAS  PubMed  Google Scholar 

  20. Georgakilas, V. et al. Organic functionalisation of graphenes. Chem. Commun. 46, 1766–1768 (2010).

    CAS  Google Scholar 

  21. Wang, X. R., Tabakman, S. M. & Dai, H. J. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130, 8152–8153 (2008).

    CAS  PubMed  Google Scholar 

  22. An, X. H. et al. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett. 10, 4295–4301 (2010).

    CAS  PubMed  Google Scholar 

  23. Zasadzinski, J. A., Viswanathan, R., Madsen, L., Garnaes, J. & Schwartz, D. K. Langmuir–Blodgett films. Science 263, 1726–1733 (1994).

    CAS  PubMed  Google Scholar 

  24. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    CAS  PubMed  Google Scholar 

  25. Sakamoto, J., van Heijst, J., Lukin, O. & Schluter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).

    CAS  Google Scholar 

  26. Gros, L., Ringsdorf, H. & Schupp, H. Polymeric antitumor agents on a molecular and on a cellular level? Angew. Chem. Int. Ed. Engl. 20, 305–325 (1981).

    Google Scholar 

  27. Chechik, V., Crooks, R. M. & Stirling, C. J. M. Reactions and reactivity in self-assembled monolayers. Adv. Mater. 12, 1161–1171 (2000).

    CAS  Google Scholar 

  28. Scott, J. C., Samuel, J. D. J., Hou, J. H., Rettner, C. T. & Miller, R. D. Monolayer transistor using a highly ordered conjugated polymer as the channel. Nano Lett. 6, 2916–2919 (2006).

    CAS  PubMed  Google Scholar 

  29. Szilluweit, R. et al. Low-temperature preparation of tailored carbon nanostructures in water. Nano Lett. 12, 2573–2578 (2012).

    CAS  PubMed  Google Scholar 

  30. Néabo, J. R., Vigier-Carrière, C., Rondeau-Gagné, S. & Morin, J-F. Room-temperature synthesis of soluble, fluorescent carbon nanoparticles from organogel precursors. Chem. Commun. 48, 10144–10146 (2012).

    Google Scholar 

  31. Ding, L. & Olesik, S. V. Synthesis of polymer nanospheres and carbon nanospheres using the monomer 1,8-dihydroxymethyl-1,3,5,7-octatetrayne. Nano Lett. 4, 2271–2276 (2004).

    CAS  Google Scholar 

  32. Luo, L. et al. Room-temperature carbonization of poly(diiododiacetylene) by reaction with Lewis bases. J. Am. Chem. Soc. 133, 19274–19277 (2011).

    CAS  PubMed  Google Scholar 

  33. Levesque, I. et al. Layered graphitic materials from a molecular precursor. Chem. Sci. 5, 831–836 (2014).

    CAS  Google Scholar 

  34. Hoheisel, T. N. & Frauenrath, H. A convenient Negishi protocol for the synthesis of glycosylated oligo(ethynylene)s. Org. Lett. 10, 4525–4528 (2008).

    CAS  PubMed  Google Scholar 

  35. Hoheisel, T. N. et al. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization. Nature Chem. 5, 327–334 (2013).

    CAS  Google Scholar 

  36. Davies, J. T. & Rideal, E. K. Interfacial Phenomena 2nd edn (Academic Press, 1963).

    Google Scholar 

  37. Mendelsohn, R., Mao, G. & Flach, C. R. Infrared reflection–absorption spectroscopy: principles and applications to lipid–protein interaction in Langmuir films. Biochim. Biophys. Acta Biomembranes 1798, 788–800 (2010).

    CAS  Google Scholar 

  38. Kuzmin, V. L. & Mikhailov, A. V. Molecular theory of light reflection and applicability limits of the macroscopic approach. Opt. Spectrosc. (USSR) 51, 383–385 (1981).

    Google Scholar 

  39. Kuzmin, V. L., Romanov, V. P. & Michailov, A. V. Reflection of light at the boundary of liquid systems and structure of the surface layer: a review. Opt. Spectrosc. 73, 1–26 (1992).

    Google Scholar 

  40. Schwieger, C., Chen, B., Tschierske, C., Kressler, J. & Blume, A. Organization of T-shaped facial amphiphiles at the air/water interface studied by infrared reflection absorption spectroscopy. J. Phys. Chem. B 116, 12245–12256 (2012).

    CAS  PubMed  Google Scholar 

  41. Szafert, S. & Gladysz, J. A. Update 1 of: Carbon in one dimension: structural analysis of the higher conjugated polyynes. Chem. Rev. 106, PR1–PR33 (2006).

    CAS  Google Scholar 

  42. Chalifoux, W. A. & Tykwinski, R. R. Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nature Chem. 2, 967–971 (2010).

    CAS  Google Scholar 

  43. Baughman, R. H. Solid-state synthesis of large polymer single crystals. J. Polym. Sci. Polym. Phys. Ed. 12, 1511–1535 (1974).

    CAS  Google Scholar 

  44. Enkelmann, V. Structural aspects of the topochemical polymerization of diacetylenes. Adv. Polym. Sci. 63, 91–136 (1984).

    CAS  Google Scholar 

  45. Eda, G. et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010).

    CAS  PubMed  Google Scholar 

  46. Kumar, P. V. et al. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nature Chem. 6, 151–158 (2014).

    CAS  Google Scholar 

  47. Cao, L., Meziani, M. J., Sahu, S. & Sun, Y-P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171–180 (2013).

    CAS  PubMed  Google Scholar 

  48. Veca, L. M. et al. Polymer functionalization and solubilization of carbon nanosheets. Chem. Commun. 2565–2567 (2009).

  49. Ferrari, A. C. & Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000).

    CAS  Google Scholar 

  50. Ferrari, A. C. & Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001).

  51. Casiraghi, C., Ferrari, A. C. & Robertson, J. Raman spectroscopy of hydrogenated amorphous carbons. Phys. Rev. B 72, 085401 (2005).

  52. Falcao, E. H. L. & Wudl, F. Carbon allotropes: beyond graphite and diamond. J. Chem. Technol. Biotechnol. 82, 524–531 (2007).

    CAS  Google Scholar 

  53. Börrnert, F. et al. Amorphous carbon under 80 kV electron irradiation: a means to make or break graphene. Adv. Mater. 24, 5630–5635 (2012).

    PubMed  Google Scholar 

  54. Warner, J. H. et al. Investigating the diameter-dependent stability of single-walled carbon nanotubes. ACS Nano 3, 1557–1563 (2009).

    CAS  PubMed  Google Scholar 

  55. Patterson, J. P. et al. A simple approach to characterizing block copolymer assemblies: graphene oxide supports for high contrast multi-technique imaging. Soft Matter 8, 3322–3328 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank I. Berndt for help with the isotherm measurements and E. Bremond for assistance with the IRRA surface plots. Also, F. Stellacci, J. C. Brauer and T. N. Hoheisel are gratefully acknowledged for helpful discussions and comments on the manuscript. Funding from the European Research Council (ERC Grant 239831, ‘OrgElNanoCarbMater’) is gratefully acknowledged, C.S. thanks the Max Planck Society for a stipend, C.Sch. thanks the DFG for funding within FOR 1145 and C.C. acknowledges the Swiss NSF Grant 200021_121577/1. We thank HASYLAB at DESY, Hamburg, Germany, for beam time and excellent support.

Author information

Authors and Affiliations

Authors

Contributions

S.S. synthesized all the compounds, performed Langmuir experiments, BAM and IRRA spectroscopy together with C.S., TEM imaging with J.R., SEM imaging with G.P., HR-TEM with E.O. and carried out the carbonization experiments as well as UV/vis spectroscopy. C.S. and G.B contributed the GIXD and specular XR experiments. C.Sch. carried out the simulation, fitting and interpretation of the IRRA spectra. Y.F. performed the Raman spectroscopy supervised by A.FiM. J.R. synthesized the hydrophilic gold nanoparticles. R.P. and C.C. performed the DFT computations. All these authors contributed to writing the manuscript. H.F. had the idea, directed the research and co-wrote the manuscript with S.S.

Corresponding author

Correspondence to Holger Frauenrath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 22331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schrettl, S., Stefaniu, C., Schwieger, C. et al. Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature. Nature Chem 6, 468–476 (2014). https://doi.org/10.1038/nchem.1939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing