Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold

Subjects

A Corrigendum to this article was published on 20 June 2014

An Erratum to this article was published on 21 May 2014

This article has been updated

Abstract

Since the first report of thiol-based self-assembled monolayers (SAMs) 30 years ago, these structures have been examined in a huge variety of applications. The oxidative and thermal instabilities of these systems are widely known, however, and are an impediment to their widespread commercial use. Here, we describe the generation of N-heterocyclic carbene (NHC)-based SAMs on gold that demonstrate considerably greater resistance to heat and chemical reagents than the thiol-based counterparts. This increased stability is related to the increased strength of the gold–carbon bond relative to that of a gold–sulfur bond, and to a different mode of bonding in the case of the carbene ligand. Once bound to gold, NHCs are not displaced by thiols or thioethers, and are stable to high temperatures, boiling water, organic solvents, pH extremes, electrochemical cycling above 0 V and 1% hydrogen peroxide. In particular, benzimidazole-derived carbenes provide films with the highest stabilities and evidence of short-range molecular ordering. Chemical derivatization can be employed to adjust the surface properties of NHC-based SAMs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction of NHCs with bare and sulfide-protected Au surfaces, and reaction of thiols and sulfides with 1-protected Au(111) surfaces.
Figure 2: Molecular-scale ordering and high stability of NHC–Au(111) surfaces.
Figure 3: Chemical derivatization of Au(111) surfaces and film stability under repeated electrochemical cycling.

Similar content being viewed by others

Change history

  • 10 April 2014

    In the version of this Article originally published, J. Hugh Horton should also have been denoted a corresponding author. This error has now been corrected in the online versions of the Article.

  • 21 May 2014

    In the version of this Article originally published, ref. 40 was incorrect, it should have read: Rodríguez-Castillo, M. et al. Reactivity of gold nanoparticles towards N-heterocyclic carbenes. Dalton Trans. 43, 5978–5982 (2014). This has been corrected in the online versions of the Article.

References

  1. Nuzzo, R. G. & Allara, D. L. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (1983).

    Article  CAS  Google Scholar 

  2. Bain, C. D. et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111, 321–335 (1989).

    Article  CAS  Google Scholar 

  3. Gates, B. D. et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    Article  CAS  Google Scholar 

  4. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self assembled monolayers of thiolates on metals as a form of technology. Chem. Rev. 105, 1103–1169 (2005).

    Article  CAS  Google Scholar 

  5. Drechsler, U., Erdogan, B. & Rotello, V. M. Nanoparticles, scaffolds for molecular recognition. Chem. Eur. J. 10, 5570–5579 (2004).

    Article  CAS  Google Scholar 

  6. Jewell, A. D., Tierney, H. L. & Sykes, E. C. H. Gently lifting gold's herringbone reconstruction: trimethylphosphine on Au(111). Phys. Rev. B 82, 205401 (2010).

    Article  Google Scholar 

  7. Leff, D. V., Brandt, L. & Heath, J. R. Synthesis and characterization of hydrophobic, organically soluble gold nanocrystals functionalized with primary amines. Langmuir 12, 4723–4730 (1996).

    Article  CAS  Google Scholar 

  8. Gittins, D. I. & Caruso, F. Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew. Chem. Int. Ed. 40, 3001–3004 (2001).

    Article  CAS  Google Scholar 

  9. Vericat, C., Vela, M. E., Benitez, G., Carro, P. & Salvarezza, R. C. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 39, 1805–1834 (2010).

    Article  CAS  Google Scholar 

  10. Gooding, J. J. & Ciampi, S. The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies. Chem. Soc. Rev. 40, 2704–2718 (2011).

    Article  CAS  Google Scholar 

  11. Srisombat, L., Jamison, A. C. & Lee, T. R. Stability: a key issue for self-assembled monolayers on gold as thin-film coatings and nanoparticle protectants. Colloids Surf. A 390, 1–19 (2011).

    Article  CAS  Google Scholar 

  12. Lee, M-T., Hsueh, C-C., Freund, M. S. & Ferguson, G. S. Air oxidation of self-assembled monolayers on polycrystalline gold: the role of the gold substrate. Langmuir 14, 6419–6423 (1998).

    Article  CAS  Google Scholar 

  13. Noh, J., Kato, H. S., Kawai, M. & Hara, M. Surface structure and interface dynamics of alkanethiol self-assembled monolayers on Au(111). J. Phys. Chem. B 110, 2793–2797 (2006).

    Article  CAS  Google Scholar 

  14. Vericat, C., Benitez, G. A., Grumelli, D. E., Vela, M. E. & Salvarezza, R. C. Thiol-capped gold: from planar to irregular surfaces. J. Phys. Condens. Matter 20, 184004–184012 (2008).

    Article  Google Scholar 

  15. Li, Y., Huang, J., McIver, R. T. Jr & Hemminger, J. C. Characterization of thiol self-assembled films by laser desorption Fourier transform mass spectrometry. J. Am. Chem. Soc. 114, 2428–2432 (1992).

    Article  CAS  Google Scholar 

  16. Schoenfisch, M. H. & Pemberton, J. E. Air stability of alkanethiol self-assembled monolayers on silver and gold. J. Am. Chem. Soc. 120, 4501–4513 (1998).

    Article  Google Scholar 

  17. Schlenoff, J. B., Li, M. & Ly, H. Stability and self-exchange in alkanethiol monolayers. J. Am. Chem. Soc. 117, 12528–12536 (1995).

    Article  CAS  Google Scholar 

  18. Tam-Chan, S-W., Biebuyck, H. A., Whitesides, G. M., Jeon, N. & Nuzzo, R. G. Self-assembled monolayers on gold generated from alkanethiols with the structure RNHCOCH2SH. Langmuir 11, 4371–4382 (1995).

    Article  Google Scholar 

  19. Yang, G., Amro, N. A., Starkewolfe, A. B. & Liu, G-Y. Molecular-level approach to inhibit degradations of alkanethiol self-assembled monolayers in aqueous media. Langmuir 20, 3995–4003 (2004).

    Article  CAS  Google Scholar 

  20. Chinwangso, P., Jamison, A. C. & Lee T. R. Multidentate adsorbates for self-assembled monolayer films. Acc. Chem. Res. 44, 511–519 (2011).

    Article  CAS  Google Scholar 

  21. Pinson, J. & Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 34, 429–439 (2005).

    Article  CAS  Google Scholar 

  22. Schuster, O., Yang, L., Raubenheimer, H. G. & Albrecht, M. Beyond conventional N-heterocyclic carbenes: abnormal, remote, and other classes of NHC ligands with reduced heteroatom stabilization. Chem. Rev. 109, 3445–3478 (2009).

    Article  CAS  Google Scholar 

  23. Herrmann, W. A. N-heterocyclic carbenes: a new concept in organometallic catalysis. Angew. Chem. Int. Ed. 41, 1290–1309 (2002).

    Article  CAS  Google Scholar 

  24. Peris, E. & Crabtree, R. H. Recent homogeneous catalytic applications of chelate and pincer N-heterocyclic carbenes. Coord. Chem. Rev. 248, 2239–2246 (2004).

    Article  CAS  Google Scholar 

  25. Lin, J. C. Y. et al. Coinage metal N-heterocyclic carbene complexes. Chem. Rev. 109, 3561–3598 (2009).

    Article  CAS  Google Scholar 

  26. Vougioukalakis, G. C. & Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 110, 1746–1787 (2010).

    Article  CAS  Google Scholar 

  27. Kantchev, E. A. B., O'Brien, C. J. & Organ, M. G. Catalysts for cross-coupling reactions – the synthetic chemist's perspective. Angew. Chem. Int. Ed. 46, 2768–2813 (2007).

    Article  CAS  Google Scholar 

  28. Igau, A., Grützmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′ bis carbenoid triply bonded species: synthesis of a stable λ3-phosphinocarbene-λ5 phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988).

    Article  CAS  Google Scholar 

  29. Arduengo, A. J., Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991).

    Article  CAS  Google Scholar 

  30. Niehues, M. et al. Synthesis and structural features of arduengo carbene complexes of group 4 metallocene cations. Organometallics 21, 2905–2911 (2002).

    Article  CAS  Google Scholar 

  31. Pyykkö, P. & Runeberg, N. Comparative theoretical study of N-heterocyclic carbenes and other ligands bound to Au. Chem. Asian J. 1, 623–628 (2006).

    Article  Google Scholar 

  32. Mercs, L. & Albrecht, M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev. 39, 1903–1912 (2010).

    Article  CAS  Google Scholar 

  33. Zahidi, E. M., Oudghiri-Hassani, H. & McBreen, P. H. Formation of thermally stable alkylidene layers on a catalytically active surface. Nature 409, 1023–1026 (2001).

    Article  CAS  Google Scholar 

  34. Tulevski, G. S., Myers, M. B., Hybertsen, M. S., Steigerwald, M. L. & Nuckolls, C. Formation of catalytic metal molecule contacts. Science 309, 591–594 (2005).

    Article  CAS  Google Scholar 

  35. Vignolle, J. & Tilley, T. D. N-heterocyclic carbene-stabilized gold nanoparticles and their assembly into 3D superlattices. Chem. Commun. 7230–7232 (2009).

  36. Hurst, E. C., Wilson, K., Fairlamb, I. J. S. & Chechik, V. N-heterocyclic carbene coated metal nanoparticles. New J. Chem. 33, 1837–1840 (2009).

    Article  CAS  Google Scholar 

  37. Huang, R. T. W., Wang, W. C., Yang, R. Y., Lu, J. T. & Lin, I. J. B. Liquid crystals of gold(I) N-heterocyclic carbene complexes. Dalton Trans. 38, 7121–7131 (2009).

    Article  Google Scholar 

  38. Serpell, C. J., Cookson, J., Thompson, A. L., Brown, C.M. & Beer, P. D. Haloaurate and halopalladate imidazolium salts: structures, properties, and use as precursors for catalytic metal nanoparticles. Dalton Trans. 42, 1385–1393 (2013).

    Article  CAS  Google Scholar 

  39. Ling, X., Schaeffer, N., Roland, S. & Pileni, M-P. Nanocrystals: why do silver and gold N-heterocyclic carbene precursors behave differently? Langmuir 29, 12647–12656 (2013).

    Article  CAS  Google Scholar 

  40. Rodríguez-Castillo, M. et al. Reactivity of gold nanoparticles towards N-heterocyclic carbenes. Dalton Trans. 43, 5978–5982 (2014).

    Article  Google Scholar 

  41. Zhukhovitskiy, A. V., Mavros, M. G., Van Voorhis, T. & Johnson, J. A. Addressable carbene anchors for gold surfaces. J. Am. Chem. Soc. 135, 7418–7421 (2013).

    Article  CAS  Google Scholar 

  42. Weidner T. et al. NHC-based self-assembled monolayers on solid gold substrates. Aust. J. Chem. 64, 1177–1179 (2011).

    Article  CAS  Google Scholar 

  43. Häkkinen, H. The gold–sulfur interface at the nanoscale. Nature Chem. 4, 443–455 (2012).

    Article  Google Scholar 

  44. Lavrich, D. J., Wetterer, S. M., Bernasek, S. L. & Scoles, G. Physisorption and chemisorption of alkanethiols and alkyl sulfides on Au(111). J. Phys. Chem. B 102, 3456–3465 (1998).

    Article  CAS  Google Scholar 

  45. Nuzzo, R. G., Dubois, L. H. & Allara, D. L. Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. J. Am. Chem. Soc. 112, 558–569 (1990).

    Article  CAS  Google Scholar 

  46. Xu, X. et al. Abnormal N-heterocyclic carbene gold(I) complexes: synthesis, structure, and catalysis in hydration of alkynes. Organometallics 32, 164–171 (2013).

    Article  CAS  Google Scholar 

  47. Schonenberger, C., Sondag-Huethorst, J. A. M., Jorritsma, J. & Fokkink, L. G. J. What are the ‘holes’ in self-assembled monolayers of alkanethiols on gold? Langmuir 10, 611–614 (1994).

    Article  Google Scholar 

  48. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  49. Prins, R., Korswagen A. R. & Kortbeek, A. G. T. G. Decomposition of the ferricenium cation by nucleophilic reagents. J. Organomet. Chem. 39, 335–344 (1972).

    Article  CAS  Google Scholar 

  50. Pensa, E. et al. New insights into the electrochemical desorption of alkanethiol SAMs on gold Phys. Chem. Chem. Phys. 14, 12355–12367 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.M.C., J.H.H., A.B.M., N.J.M., G.W. and H-B.K. acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding in terms of Discovery and Research Tools and Instruments grants. C.M.C. acknowledges NSERC for Discovery Accelerator Supplements funding. C.M.C., J.H.H., A.B.M. and G.W. acknowledge the Canada Foundation for Innovation for infrastructure funding. E.C.K. acknowledges NSERC for a Postgraduate Scholarship (Doctoral) fellowship. J.D.L. and A.R-W. acknowledge NSERC for Undergraduate Student Research Awards funding. E.C.K. and T.S. acknowledge the Queen's Chemistry Department for Queen's Graduate Awards. P. McBreen, K. Itami and H-P. Loock are thanked for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.M.C. conceived the concept, and J.H.H. and C.M.C. equally designed the experiments and prepared the manuscript using feedback from the other authors. Synthetic studies were carried out in C.M.C.'s lab, and surface studies in J.H.H.'s lab. A.B.M. and B.D. carried out STM studies, G.W. carried out solid-state MAS NMR studies, N.J.M. carried out computational studies, I.I.E., E.C.K. and T.S. worked on the syntheses of NHCs 6 and 7. O.V.Z., J.D.L. and A.R-W. worked on the synthesis and adsorption of carbenes 1–5 on surfaces. O.V.Z. and I.I.E. carried out the stability studies. I.I.E. carried out surface characterizations. Z.S. and H.B.K. carried out electrochemical measurements.

Corresponding authors

Correspondence to Cathleen M. Crudden or J. Hugh Horton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6451 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crudden, C., Horton, J., Ebralidze, I. et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nature Chem 6, 409–414 (2014). https://doi.org/10.1038/nchem.1891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing