Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-powered enzyme micropumps

Abstract

Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic that shows the enzyme pattern on a surface and triggered fluid pumping by enzymatic micropumps.
Figure 2: Fluid pumping velocity in an enzyme-powered micropump as a function of substrate concentration and reaction rate.
Figure 3: Temporal and spatial changes in fluid-pumping velocity for catalase-powered micropumps.
Figure 4: Fluid pumping in enzyme micropumps generated by density-driven flows.
Figure 5: Urease-powered stimuli-responsive autonomous release of dye.
Figure 6: GOx-powered stimuli-responsive release of insulin.

Similar content being viewed by others

References

  1. Sengupta, S., Ibele, M. E. & Sen, A. Fantastic voyage: designing self-powered nanorobots. Angew. Chem. Int. Ed. 51, 8434–8445 (2012).

    Article  CAS  Google Scholar 

  2. Patra, D. et al. Intelligent, self-powered, drug delivery systems. Nanoscale 5, 1273–1283 (2013).

    Article  CAS  Google Scholar 

  3. Wang, J. Can man-made nanomachines compete with nature biomotors? ACS Nano 3, 4–9 (2009).

    Article  CAS  Google Scholar 

  4. Sanchez, S. & Pumera, M. Nanorobots: the ultimate wireless self-propelled sensing and actuating devices. Chem. Asian J. 4, 1402–1410 (2009).

    Article  CAS  Google Scholar 

  5. Hong, Y., Velegol, D., Chaturvedi, N. & Sen, A. Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control. Phys. Chem. Chem. Phys. 12, 1423–1425 (2010).

    Article  CAS  Google Scholar 

  6. Mei, Y., Solovev, A. A., Sanchez, S. & Schmidt, O. G. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 40, 2109–2119 (2011).

    Article  CAS  Google Scholar 

  7. Mirkovic, T., Zacharia, N. S., Scholes, G. D. & Ozin, G. A. Nanolocomotion—catalytic nanomotors and nanorotors. Small 6, 159–167 (2010).

    Article  CAS  Google Scholar 

  8. Paxton, W. F., Sen, A. & Mallouk, T. E. Motility of catalytic nanoparticles through self-generated forces. Chem Eur. J. 11, 6462–6470 (2005).

    Article  CAS  Google Scholar 

  9. Pumera, M. Nanomaterials meet microfluidics. Chem. Commun. 47, 5671–5680 (2011).

    Article  CAS  Google Scholar 

  10. Mallouk, T. E. & Sen, A. Powering nanorobots. Sci. Am. 300, 72–77 (2009).

    Article  CAS  Google Scholar 

  11. Laser, D. J. & Santiago, J. G. A review of micropumps. J. Micromech. Microeng. 14, R35–R64 (2004).

    Article  Google Scholar 

  12. Nisar, A., Afzulpurkar, N., Mahaisavariya, B. & Tuantranont, A. MEMS-based micropumps in drug delivery and biomedical applications. Sens. Actuat. B Chem. 130, 917–942 (2008).

    Article  CAS  Google Scholar 

  13. Dash, A. K. & Cudworth II, G. C. Therapeutic applications of implantable drug delivery systems. J. Pharmacol. Toxicol. Methods 40, 1–12 (1998).

    Article  CAS  Google Scholar 

  14. Jakeway, S. C., de Mello, A. J. & Russell, E. L. Miniaturized total analysis systems for biological analysis. Fresenius J. Anal. Chem. 366, 525–539 (2000).

    Article  CAS  Google Scholar 

  15. van der Schoot, B., Jeanneret, S., van den Berg, A. & de Rooij, F. A. A silicon integrated miniature chemical analysis system. Sens. Actuat. B Chem. 6, 57–60 (1992).

    Article  CAS  Google Scholar 

  16. Khandurina, J. et al. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal. Chem. 72, 2995–3000 (2000).

    Article  CAS  Google Scholar 

  17. Woolley, A. T. et al. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem. 68, 4081–4086 (1996).

    Article  CAS  Google Scholar 

  18. Zhang, H. et al. Self-powered microscale pumps based on analyte-initiated depolymerization reactions. Angew. Chem. Int. Ed. 51, 2400–2404 (2012).

    Article  CAS  Google Scholar 

  19. Kline, T. R. et al. Catalytic micropumps: microscopic convective fluid flow and pattern formation. J. Am. Chem. Soc. 127, 17150–17151 (2005).

    Article  CAS  Google Scholar 

  20. Ibele, M. E., Wang, Y., Kline, T. R., Mallouk, T. E. & Sen, A. Hydrazine fuels for bimetallic catalytic microfluidic pumping. J. Am. Chem. Soc. 129, 7762–7763 (2007).

    Article  CAS  Google Scholar 

  21. Jun, I. K. & Hess, H. A. A biomimetic, self-pumping membrane. Adv. Mater. 22, 4823–4825 (2010).

    Article  CAS  Google Scholar 

  22. Hong, Y., Diaz, M., Córdova-Figueroa, U. M. & Sen, A. Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv. Funct. Mater. 20, 1568–1576 (2010).

    Article  CAS  Google Scholar 

  23. Paxton, W. F. et al. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128, 14881–14888 (2006).

    Article  CAS  Google Scholar 

  24. Solovev, A. A., Sanchez, S., Mei, Y. & Schmidt, O. G. Tunable catalytic tubular micro-pumps operating at low concentrations of hydrogen peroxide. Phys. Chem. Chem. Phys. 13, 10131–10135 (2011).

    Article  CAS  Google Scholar 

  25. Zhang, L. et al. Measurements and modeling of two-phase flow in microchannels with nearly constant heat flux boundary conditions. J. Microelectromech. Syst. 11, 12–19 (2002).

    Article  Google Scholar 

  26. Hogg, T. & Freitas, R. A. Chemical power for microscopic robots in capillaries. Nanomedicine: Nanotech. Biol. Med. 6, 298–317 (2010).

    Article  CAS  Google Scholar 

  27. Yadav, V., Zhang, H., Pavlick, R. A. & Sen, A. Triggered ‘on/off’ micropumps and colloidal photodiode. J. Am. Chem. Soc. 134, 15688–15691 (2012).

    Article  CAS  Google Scholar 

  28. Andersson, H., van der Wijngaart, W., Nilsson, P., Enoksson, P. & Stemme, G. A valve-less diffuser micropump for microfluidic analytical systems. Sens. Actuat. B Chem. 72, 259–265 (2001).

    Article  CAS  Google Scholar 

  29. Sengupta, S. et al. Enzyme molecules as nanomotors. J. Am. Chem. Soc. 135, 1406–1414 (2013).

    Article  CAS  Google Scholar 

  30. Muddana, H. S., Sengupta, S., Mallouk, T. E., Sen, A. & Butler, P. J. Substrate catalysis enhances single-enzyme diffusion. J. Am. Chem. Soc. 132, 2110–2111 (2010).

    Article  CAS  Google Scholar 

  31. Yu, H., Jo, K., Kounovsky, K. L., de Pablo, J. J. & Schwartz, D. C. Molecular propulsion: chemical sensing and chemotaxis of DNA driven by RNA polymerase. J. Am. Chem. Soc. 131, 5722–5723 (2009).

    Article  CAS  Google Scholar 

  32. Gu, Z. et al. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 7, 8, 6758–6766 (2013).

    Article  CAS  Google Scholar 

  33. Miranda, O. R. et al. Enzyme-amplified array sensing of proteins in solution and in biofluids. J. Am. Chem. Soc. 132, 5285–5289 (2010).

    Article  CAS  Google Scholar 

  34. Gaetani, G. et al. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 87, 1595–1599 (1996).

    Article  CAS  Google Scholar 

  35. Svendsen, A. Lipase protein engineering. Biochim. Biophys. Acta 1543, 223–228 (2000).

    Article  CAS  Google Scholar 

  36. Raba, J. & Mottola, H. A. Glucose oxidase as an analytical reagent. Crit. Rev. Anal. Chem. 25, 1–42 (1995).

    Article  CAS  Google Scholar 

  37. Golestanian, R., Liverpool, T. B. & Ajdari, A. Designing phoretic micro- and nano-swimmers. New J. Phys. 9, 126 (2007).

    Article  Google Scholar 

  38. Golestanian, R., Liverpool, T. B. & Ajdari, A. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94, 220801 (2005).

    Article  Google Scholar 

  39. Anderson, J. L. & Prieve, D. C. Diffusiophoresis: migration of colloidal particles in gradients of solute concentration. Separ. Purif. Method 13, 67–103 (1984).

    Article  CAS  Google Scholar 

  40. Pavlick, R. A., Sengupta, S., McFadden, T., Zhang, H. & Sen, A. A polymerization-powered motor. Angew. Chem. Int. Ed. 50, 9374–9377 (2011).

    Article  CAS  Google Scholar 

  41. Moran, J. L. & Posner, J. D. Electrokinetic locomotion by reaction induced charge auto-electrophoresis. J. Fluid Mech. 680, 31–66 (2011).

    Article  CAS  Google Scholar 

  42. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).

    Article  Google Scholar 

  43. Córdova-Figueroa, U. M. & Brady, J. F. Osmotic propulsion: the osmotic motor. Phys. Rev. Lett. 100, 158303 (2008).

    Article  Google Scholar 

  44. Ke, H., Ye, S., Carroll, R. L. & Showalter, K. Motion analysis of self-propelled Pt−silica particles in hydrogen peroxide solutions. J. Phys. Chem. A 114, 5462–5467 (2010).

    Article  CAS  Google Scholar 

  45. Anderson, J. L. Colloid transport by interfacial forces. Ann. Rev. Fluid Mech. 21, 61–99 (1989).

    Article  Google Scholar 

  46. Anderson, J. L., Lowell, M. E. & Prieve, D. C. Motion of a particle generated by chemical gradients. Part 1. Non-electrolytes. J. Fluid Mech. 117, 107–121 (1982).

    Article  CAS  Google Scholar 

  47. Prieve, D. C., Anderson, J. L., Ebel, J. L. & Lowell, M. E. Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 148, 247–269 (1984).

    Article  CAS  Google Scholar 

  48. Strutt, J. W. On convection currents in a horizontal layer of fluid, when the higher temperature is on the underside. Phil. Mag. 32, 529–546 (1916).

    Article  Google Scholar 

  49. Zhao, G. & Pumera, M. Macroscopic self-propelled objects. Chem. Asian J. 7, 1994–2002 (2012).

    Article  CAS  Google Scholar 

  50. Gammeltoft, S. Receptor binding of biosynthetic human insulin on isolated pig hepatocytes. Diabetes Care 4, 2, 235–237 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by the Penn State Materials Research Science and Engineering Centers under National Sciences Foundation (NSF) grant DMR-0820404 and, in part, by the Defense Threat Reduction Agency (HDTRA1-13-1-0039). This publication was supported by the Pennsylvania State University Materials Research Institute Nanofabrication Lab and the SNF Cooperative Agreement No. ECS-0335765. This publication is also based on work supported by Award No. RUP1-7078-PE-12 of the US Civilian Research & Development Foundation (CRDF Global) and by the NSF under Cooperative Agreement No. OISE-9531011 (joint grant with the Ural Branch of the Russian Academy of Sciences). I.O-R. acknowledges a NSF Fellowship (DGE-1255832).

Author information

Authors and Affiliations

Authors

Contributions

S.S., D.P., T.E.M. and A.S. designed the research. S.S., D.P., I.O-R. and A.A. performed the research. S.S., D.P. and I.O-R. contributed new reagents and analytical tools. S.S., I.O-R., K.K.D., S.Sh., U.C-F., T.E.M. and A.S. analysed the data. S.S., D.P., I.O-R and A.S. wrote the manuscript.

Corresponding authors

Correspondence to Thomas E. Mallouk or Ayusman Sen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5471 kb)

Supplementary Movie 1

Supplementary Movie 1 (MP4 745 kb)

Supplementary Movie 2

Supplementary Movie 2 (MP4 2854 kb)

Supplementary Movie 3

Supplementary Movie 3 (MP4 1227 kb)

Supplementary Movie 4

Supplementary Movie 4 (MP4 0 kb)

Supplementary Movie 5

Supplementary Movie 5 (MP4 2502 kb)

Supplementary Movie 6

Supplementary Movie 6 (MP4 2611 kb)

Supplementary Movie 7

Supplementary Movie 7 (MP4 3443 kb)

Supplementary Movie 8

Supplementary Movie 8 (MP4 3246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, S., Patra, D., Ortiz-Rivera, I. et al. Self-powered enzyme micropumps. Nature Chem 6, 415–422 (2014). https://doi.org/10.1038/nchem.1895

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing