Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator

An Addendum to this article was published on 22 April 2014

This article has been updated

Abstract

In vitro compartmentalization of biochemical reaction networks is a crucial step towards engineering artificial cell-scale devices and systems. At this scale the dynamics of molecular systems becomes stochastic, which introduces several engineering challenges and opportunities. Here we study a programmable transcriptional oscillator system that is compartmentalized into microemulsion droplets with volumes between 33 fl and 16 pl. Simultaneous measurement of large populations of droplets reveals major variations in the amplitude, frequency and damping of the oscillations. Variability increases for smaller droplets and depends on the operating point of the oscillator. Rather than reflecting the stochastic kinetics of the chemical reaction network itself, the variability can be attributed to the statistical variation of reactant concentrations created during their partitioning into droplets. We anticipate that robustness to partitioning variability will be a critical challenge for engineering cell-scale systems, and that highly parallel time-series acquisition from microemulsion droplets will become a key tool for characterization of stochastic circuit function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An in vitro transcriptional oscillator.
Figure 2: Compartmentalized synthetic transcriptional oscillators.
Figure 3: Dynamical diversity in oscillatory behaviour caused by encapsulation of sustained and damped synthetic oscillator circuits.
Figure 4: Oscillations induced by compartmentalization.
Figure 5: Variation of oscillation periods and amplitudes with droplet radius for the sustained, damped and strongly damped oscillator tunings.
Figure 6: Numerical modelling of the compartmentalized oscillator.

Similar content being viewed by others

Change history

  • 22 April 2014

    The authors wish to add the following to the Acknowledgements section of this Article ‘E.F. and F.C.S. gratefully acknowledge funding from the Bavaria California Technology Center (BaCaTeC).’ The online versions of the Article have been amended accordingly.

References

  1. Kim, J., White, K. S. & Winfree, E. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol. Sys. Biol. 2, 68 (2006).

    Article  Google Scholar 

  2. Forster, A. C. & Church, G. M. Synthetic biology projects in vitro. Genome Res. 17, 1–6 (2007).

    Article  CAS  Google Scholar 

  3. Montagne, K., Plasson, R., Sakai, Y., Fujii, T. & Rondelez, Y. Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7, 466 (2011).

    Article  Google Scholar 

  4. Zhou, H-X., Rivas, G. & Minton, A. P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Ann. Rev. Biophys. 37, 375–397 (2008).

    Article  CAS  Google Scholar 

  5. De, T. & Maitra, A. Solution behaviour of aerosol OT in non-polar solvents. Adv. Colloid Interface Sci. 59, 95–193 (1995).

    Article  CAS  Google Scholar 

  6. Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977).

    Article  CAS  Google Scholar 

  7. Noireaux, V. & Libchaber, A. A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl Acad. Sci. USA 101, 17669–17674 (2004).

    Article  CAS  Google Scholar 

  8. Shin, J. & Noireaux, V. An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synthetic Biol. 1, 29–41 (2012).

    Article  CAS  Google Scholar 

  9. Matsuura, T. et al. Effects of compartment size on the kinetics of intracompartmental multimeric protein synthesis. ACS Synthetic Biol. 1, 431–437 (2012).

    Article  CAS  Google Scholar 

  10. Theberge, A. B. et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed. 49, 5846–5868 (2010).

    Article  CAS  Google Scholar 

  11. Rotman, B. Measurement of activity of single molecules of beta-D-galactosidase. Proc. Natl Acad. Sci. USA 47, 1981–1991 (1961).

    Article  CAS  Google Scholar 

  12. Nakano, M. et al. Single-molecule PCR using water-in-oil emulsion. J. Biotechnol. 102, 117–124 (2003).

    Article  CAS  Google Scholar 

  13. Miller, O. J. et al. Directed evolution by in vitro compartmentalization. Nature Methods 3, 561–570 (2006).

    Article  CAS  Google Scholar 

  14. Lu, W-C. & Ellington, A. D. In vitro selection of proteins via emulsion compartments. Methods 60, 75–80 (2013).

    Article  CAS  Google Scholar 

  15. Epstein, I. et al. Chemical oscillators in structured media. Acc. Chem. Res. 45, 2160–2168 (2011).

    Article  Google Scholar 

  16. Nagypal, I. & Epstein, I. R. Fluctuations and stirring rate effects in the chlorite thiosulfate reaction. J. Phys. Chem. 90, 6285–6292 (1986).

    Article  CAS  Google Scholar 

  17. Vanag, V. & Epstein, I. Pattern formation in a tunable medium: the Belousov–Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 87, 228301 (2001).

    Article  CAS  Google Scholar 

  18. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  Google Scholar 

  19. Fung, E. et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005).

    Article  CAS  Google Scholar 

  20. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–539 (2008).

    Article  CAS  Google Scholar 

  21. Tigges, M., Marquez-Lago, T. T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009).

    Article  CAS  Google Scholar 

  22. Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010).

    Article  CAS  Google Scholar 

  23. Ackermann, J., Wlotzka, B. & McCaskill, J. In vitro DNA-based predator–prey system with oscillatory kinetics. Bull. Math. Biol. 60, 329–354 (1998).

    Article  CAS  Google Scholar 

  24. Kim, J. & Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol. 7, 465 (2011).

    Article  Google Scholar 

  25. Franco, E. et al. Timing molecular motion and production with a synthetic transcriptional clock. Proc. Natl Acad. Sci. USA 108, E784–E793 (2011).

    Article  CAS  Google Scholar 

  26. Winfree, A. T. The Geometry of Biological Time (Springer, 1980).

    Book  Google Scholar 

  27. Gonze, D., Halloy, J. & Goldbeter, A. Robustness of circadian rhythms with respect to molecular noise. Proc. Natl Acad. Sci. USA 99, 673–678 (2002).

    Article  CAS  Google Scholar 

  28. Vilar, J. M. G., Kueh, H. Y., Barkai, N. & Leibler, S. Mechanisms of noise-resistance in genetic oscillators. Proc. Natl Acad. Sci. USA 99, 5988–5992 (2002).

    Article  CAS  Google Scholar 

  29. Kar, S., Baumann, W. T., Paul, M. R. & Tyson, J. J. Exploring the roles of noise in the eukaryotic cell cycle. Proc. Natl Acad. Sci. USA 106, 6471–6476 (2009).

    Article  CAS  Google Scholar 

  30. Hong, C. I., Conrad, E. D. & Tyson, J. J. A proposal for robust temperature compensation of circadian rhythms. Proc. Natl Acad. Sci. USA. 104, 1195–1200 (2007).

    Article  CAS  Google Scholar 

  31. Fujii, T. & Rondelez, Y. Predator–prey molecular ecosystems. ACS Nano 7, 27–34 (2013).

    Article  CAS  Google Scholar 

  32. Hasatani, K. et al. High-throughput and long-term observation of compartmentalized biochemical oscillators. Chem. Comm. 49, 8090–8092 (2013).

    Article  CAS  Google Scholar 

  33. Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet. 6, 451–464 (2005).

    Article  CAS  Google Scholar 

  34. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    Article  CAS  Google Scholar 

  35. Huh, D. & Paulsson, J. Non-genetic heterogeneity from stochastic partitioning at cell division. Nature Genet. 43, 95–100 (2011).

    Article  CAS  Google Scholar 

  36. Huh, D. & Paulsson, J. Random partitioning of molecules at cell division. Proc. Natl Acad. Sci. USA 108, 15004–15009 (2011).

    Article  CAS  Google Scholar 

  37. Rizzo, J., Gifford, L. K., Zhang, X., Gewirtz, A. M. & Lu, P. Chimeric RNA–DNA molecular beacon assay for ribonuclease H activity. 16, 277–283 (2002).

  38. Holtze, C. et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab on a Chip 8, 1632–1639 (2008).

    Article  CAS  Google Scholar 

  39. Liu, Y., Jung, S-Y. & Collier, C. P. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets. Anal. Chem. 81, 4922–4928 (2009).

    Article  CAS  Google Scholar 

  40. Maslak, M. & Martin, C. T. Effects of solution conditions on the steady-state kinetics of initiation of transcription by T7 RNA polymerase. Biochemistry 33, 6918–6924 (1994).

    Article  CAS  Google Scholar 

  41. Friedman, N., Cai, L. & Xie, X. S. Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett. 97 (2006).

  42. Modesti, M. in Single Molecule Analysis (eds Peterman, E. J. G. & Wuite, G. J. L.) 101–120 (Methods in Molecular Biology 783, Humana Press, 2011).

    Book  Google Scholar 

  43. Gutenkunst, R. N. et al. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3, e189 (2007).

    Article  Google Scholar 

  44. Subsoontorn, P., Kim, J. & Winfree, E. Ensemble Bayesian analysis of bistability in a synthetic transcriptional switch. ACS Synthetic Biol. 1, 299–316 (2012).

    Article  CAS  Google Scholar 

  45. Schütze, T. et al. A streamlined protocol for emulsion polymerase chain reaction and subsequent purification. Anal. Biochem. 410, 155–157 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the National Science Foundation grants CCF-0832824 (The Molecular Programming Project) and CMMI-1266402, by the Bourns College of Engineering at the University of California at Riverside (UC), the UC Regents Faculty Development Fellowship, the European Commission FP7 grant no. 248919 (Bacterial Computing with Engineered Populations), the German Research Foundation Cluster of Excellence Nanosystems Initiative Munich and the Elite Network of Bayern. Surfactant E2K0660 was supplied by RainDance Technologies. We acknowledge E. Friedrichs and R. Jungmann for initial experiments; U. Gerland, R. Murray and N. Karlsson for useful discussions, advice and support; and C. Martin, L. Ramìrez-Tapia, E. Stahl and H. Dietz for providing fluorescently labelled T7 RNAP.

Author information

Authors and Affiliations

Authors

Contributions

E.W., E.F. and F.C.S. designed the research; M.W., J.K. and E.F. performed the research; M.W., J.K., K.K. and E.F. analysed the data; E.W., E.F. and F.C.S wrote the paper.

Corresponding authors

Correspondence to Elisa Franco or Friedrich C. Simmel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 23789 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 2854 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 2223 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 4665 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weitz, M., Kim, J., Kapsner, K. et al. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nature Chem 6, 295–302 (2014). https://doi.org/10.1038/nchem.1869

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing