Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SnAP reagents for the one-step synthesis of medium-ring saturated N-heterocycles from aldehydes

Abstract

Interest in saturated N-heterocycles as scaffolds for the synthesis of bioactive molecules is increasing. Reliable and predictable synthetic methods for the preparation of these compounds, especially medium-sized rings, are limited. We describe the development of SnAP (Sn amino protocol) reagents for the transformation of aldehydes into seven-, eight- and nine-membered saturated N-heterocycles. This process occurs under mild, room-temperature conditions and offers exceptional substrate scope and functional-group tolerance. Air- and moisture-stable SnAP reagents are prepared on a multigram scale from inexpensive starting materials by simple reaction sequences. These new reagents and processes allow widely available aryl, heteroaryl and aliphatic aldehydes to be converted into diverse N-heterocycles, including diazepanes, oxazepanes, diazocanes, oxazocanes and hexahydrobenzoxazonines, by a single synthetic operation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The SnAP-reagent concept.
Figure 2: SnAP reagents for seven-, eight- and nine-membered ring synthesis.
Figure 3: Gram-scale synthesis of substituted 1,4-oxazepane.
Figure 4: Proposed mechanism for copper-mediated cyclization.

Similar content being viewed by others

References

  1. Schröter, S., Stock, C. & Bach, T. Regioselective cross-coupling reactions of multiple halogenated nitrogen-, oxygen-, and sulfur-containing heterocycles. Tetrahedron 61, 2245–2267 (2005).

    Article  Google Scholar 

  2. Slagt, V. F., de Vries, A. H. M., de Vries, J. G. & Kellogg, R. M. Practical aspects of carbon–carbon cross-coupling reactions using heteroarenes. Org. Process Res. Dev. 14, 30–47 (2009).

    Article  Google Scholar 

  3. Seregin, I. V. & Gevorgyan, V. Direct transition metal-catalyzed functionalization of heteroaromatic compounds. Chem. Soc. Rev. 36, 1173–1193 (2007).

    Article  CAS  Google Scholar 

  4. Ritchie, T. J. & Macdonald, S. J. F. The impact of aromatic ring count on compound developability – are too many aromatic rings a liability in drug design? Drug Discov. Today 14, 1011–1020 (2009).

    Article  CAS  Google Scholar 

  5. Ritchie, T. J., Macdonald, S. J. F., Young, R. J. & Pickett, S. D. The impact of aromatic ring count on compound developability: further insights by examining carbo- and hetero-aromatic and -aliphatic ring types. Drug Discov. Today 16, 164–171 (2011).

    Article  CAS  Google Scholar 

  6. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  Google Scholar 

  7. Leeson, P. D., St-Gallay, S. A. & Wenlock, M. C. Impact of ion class and time on oral drug molecular properties. Med. Chem. Comm. 2, 91–105 (2011).

    Article  CAS  Google Scholar 

  8. Meanwell, N. A. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem. Res. Toxicol. 24, 1420–1456 (2011).

    Article  CAS  Google Scholar 

  9. Vo, C-V. T., Mikutis, G. & Bode, J. W. SnAP reagents for the transformation of aldehydes into substituted thiomorpholines—an alternative to cross-coupling with saturated heterocycles. Angew. Chem. Int. Ed. 52, 1705–1708 (2013).

    Article  CAS  Google Scholar 

  10. Galli, C. & Mandolini, L. The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur. J. Org. Chem. 3117–3125 (2000).

  11. Mitchell, E. A., Peschiulli, A., Lefevre, N., Meerpoel, L. & Maes, B. U. W. Direct α-functionalization of saturated cyclic amines. Chem. Eur. J. 18, 10092–10142 (2012).

    Article  CAS  Google Scholar 

  12. Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F. & Tada, M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 108, 3795–3892 (2008).

    Article  Google Scholar 

  13. Hannedouche, J. & Schulz, E. Asymmetric hydroamination: a survey of the most recent developments. Chem. Eur. J. 19, 4972–4985 (2013).

    Article  CAS  Google Scholar 

  14. Schultz, D. R. & Wolfe, J. P. Recent developments in palladium-catalyzed alkene aminoarylation reactions for the synthesis of nitrogen heterocycles. Synthesis 44, 351–361 (2012).

    Article  CAS  Google Scholar 

  15. Zhou, Y-G. Asymmetric hydrogenation of heteroaromatic compounds. Acc. Chem. Res. 40, 1357–1366 (2007).

    Article  CAS  Google Scholar 

  16. Campos, K. R. Direct sp3 C–H bond activation adjacent to nitrogen in heterocycles. Chem. Soc. Rev. 36, 1069–1084 (2007).

    Article  CAS  Google Scholar 

  17. Coldham, I. & Leonori, D. Synthesis of 2-arylpiperidines by palladium couplings of aryl bromides with organozinc species derived from deprotonation of N-Boc-piperidine. Org. Lett. 10, 3923–3925 (2008).

    Article  CAS  Google Scholar 

  18. Crestey, F. O., Witt, M., Jaroszewski, J. W. & Franzyk, H. Expedite protocol for construction of chiral regioselectively N-protected monosubstituted piperazine, 1,4-diazepane, and 1,4-diazocane building blocks. J. Org. Chem. 74, 5652–5655 (2009).

    Article  CAS  Google Scholar 

  19. Deiters, A. & Martin, S. F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev. 104, 2199–2238 (2004).

    Article  CAS  Google Scholar 

  20. Murakami, M., Hayashi, M. & Ito, Y. Generation of (α-aminoalkyl)samarium(III) by a new method of metalation and its carbon–carbon bond-forming reactions. Appl. Organomet. Chem. 9, 385–397 (1995).

    Article  CAS  Google Scholar 

  21. Yoshikai, N., Mieczkowski, A., Matsumoto, A., Ilies, L. & Nakamura, E. Iron-catalyzed C–C bond formation at α-position of aliphatic amines via C–H bond activation through 1,5-hydrogen transfer. J. Am. Chem. Soc. 132, 5568–5569 (2010).

    Article  CAS  Google Scholar 

  22. Neukom, J. D., Aquino, A. S. & Wolfe, J. P. Synthesis of saturated 1,4-benzodiazepines via Pd-catalyzed carboamination reactions. Org. Lett. 13, 2196–2199 (2011).

    Article  CAS  Google Scholar 

  23. Hoyt, S. B. et al. Discovery of a novel class of benzazepinone Nav1.7 blockers: potential treatments for neuropathic pain. Bioorg. Med. Chem. Lett. 17, 4630–4634 (2007).

    Article  CAS  Google Scholar 

  24. Tomaszewski, M. J. & Warkentin, J. Rate constants for aryl radical cyclization to aldimines: synthesis of tetrahydroisoquinolines by fast 6-endo closures to carbon. Tetrahedron Lett. 33, 2123–2126 (1992).

    Article  CAS  Google Scholar 

  25. Bowman, W. R., Stephenson, P. T., Terrett, N. K. & Young, A. R. Radical cyclisations of imines and hydrazones. Tetrahedron 51, 7959–7980 (1995).

    Article  CAS  Google Scholar 

  26. Tomaszewski, M. J., Warkentin, J. & Werstiuk, N. H. Free-radical chemistry of imines. Aust. J. Chem. 48, 291–321 (1995).

    Article  CAS  Google Scholar 

  27. Friestad, G. K. Addition of carbon-centered radicals to imines and related compounds. Tetrahedron 57, 5461–5496 (2001).

    Article  CAS  Google Scholar 

  28. Kim, S., Yoon, K. S. & Kim, Y. S. Kinetic studies of intramolecular additions of alkyl radicals onto imines. Tetrahedron 53, 73–80 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an ETH Research Grant (ETH-12 11-1) and the European Research Council (ERC Starting Grant No. 306793 – CASAA). The authors acknowledge L. Bertschi for assistance with mass spectrometry analysis.

Author information

Authors and Affiliations

Authors

Contributions

C-V.T.V. and M.U.L. performed the experiments, compound characterization and data analysis. All authors contributed to experiment design, discussions and writing the manuscripts.

Corresponding author

Correspondence to Jeffrey W. Bode.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7697 kb)

Supplementary information

Crystallographic data for compound 11b (CIF 362 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vo, CV., Luescher, M. & Bode, J. SnAP reagents for the one-step synthesis of medium-ring saturated N-heterocycles from aldehydes. Nature Chem 6, 310–314 (2014). https://doi.org/10.1038/nchem.1878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing