Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Short peptides self-assemble to produce catalytic amyloids

Abstract

Enzymes fold into unique three-dimensional structures, which underlie their remarkable catalytic properties. The requirement to adopt a stable, folded conformation is likely to contribute to their relatively large size (>10,000 Da). However, much shorter peptides can achieve well-defined conformations through the formation of amyloid fibrils. To test whether short amyloid-forming peptides might in fact be capable of enzyme-like catalysis, we designed a series of seven-residue peptides that act as Zn2+-dependent esterases. Zn2+ helps stabilize the fibril formation, while also acting as a cofactor to catalyse acyl ester hydrolysis. These results indicate that prion-like fibrils are able to not only catalyse their own formation, but they can also catalyse chemical reactions. Thus, they might have served as intermediates in the evolution of modern-day enzymes. These results also have implications for the design of self-assembling nanostructured catalysts including ones containing a variety of biological and non-biological metal ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of concept and design.
Figure 2: Functional characterization of the catalysts.
Figure 3: The active species have a β-sheet secondary structure.
Figure 4: Large amyloid fibrils are responsible for catalysis.
Figure 5: Synergistic interactions between peptides.

Similar content being viewed by others

References

  1. Greenwald, J. & Riek, R. On the possible amyloid origin of protein folds. J. Mol. Biol. 421, 417–426 (2012).

    Article  CAS  Google Scholar 

  2. Carny, O. & Gazit, E. A model for the role of short self-assembled peptides in the very early stages of the origin of life. FASEB J. 19, 1051–1055 (2005).

    Article  CAS  Google Scholar 

  3. DeGrado, W. F. & Lear, J. D. Induction of peptide conformation at apolar/water interfaces: a study with model peptides of defined hydrophobic periodicity. J. Am. Chem. Soc. 107, 7684–7689 (1985).

    Article  CAS  Google Scholar 

  4. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012).

    Article  CAS  Google Scholar 

  5. Colletier, J. P. et al. Molecular basis for amyloid-beta polymorphism. Proc. Natl Acad. Sci. USA 108, 16938–16943 (2011).

    Article  CAS  Google Scholar 

  6. Nowick, J. S. Exploring β-sheet structure and interactions with chemical model systems. Acc. Chem. Res. 41, 1319–1330 (2008).

    Article  CAS  Google Scholar 

  7. Wachtershauser, G. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452–484 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rode, B. M., Son, H. L., Suwannachot, Y. & Bujdak, J. The combination of salt induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive earth conditions. Orig. Life Evol. Biosph. 29, 273–286 (1999).

    Article  CAS  Google Scholar 

  9. Christianson, D. W. & Fierke, C. A. Carbonic anhydrase: evolution of a zinc binding site by nature and by design. Acc. Chem. Res. 29, 331–339 (1996).

    Article  CAS  Google Scholar 

  10. Iverson, T. M., Alber, B. E., Kisker, C., Ferry, J. G. & Rees, D. C. A closer look at the active site of gamma-class carbonic anhydrases: high-resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Biochemistry 39, 9222–9231 (2000).

    Article  CAS  Google Scholar 

  11. West, M. W. et al. De novo amyloid proteins from designed combinatorial libraries. Proc. Natl Acad. Sci. USA 96, 11211–11216 (1999).

    Article  CAS  Google Scholar 

  12. DeGrado, W. F., Wasserman, Z. R. & Lear, J. D. Protein design, a minimalist approach. Science 243, 622–628 (1989).

    Article  CAS  Google Scholar 

  13. Schneider, J. P. et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124, 15030–15037 (2002).

    Article  CAS  Google Scholar 

  14. Zhang, S., Marini, D. M., Hwang, W. & Santoso, S. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr. Opin. Chem. Biol. 6, 865–871 (2002).

    Article  Google Scholar 

  15. Minor, D. L. & Kim, P. S. Measurement of the β-sheet-forming propensities of amino acids. Nature 367, 660–663 (1994).

    Article  CAS  Google Scholar 

  16. Smith, C. K., Withka, J. M. & Regan, L. A thermodynamic scale for the β-sheet forming tendencies of the amino acids. Biochemistry 33, 5510–5517 (1994).

    Article  CAS  Google Scholar 

  17. Krattiger, P., Kovasy, R., Revell, J. D., Ivan, S. & Wennemers, H. Increased structural complexity leads to higher activity: peptides as efficient and versatile catalysts for asymmetric aldol reactions. Org. Lett. 7, 1101–1103 (2005).

    Article  CAS  Google Scholar 

  18. Tang, Z. et al. Small peptides catalyze highly enantioselective direct aldol reactions of aldehydes with hydroxyacetone: unprecedented regiocontrol in aqueous media. Org. Lett. 6, 2285–2287 (2004).

    Article  CAS  Google Scholar 

  19. Kodaka, M. Hydrolysis of p-nitrophenyl esters by histidine-containing linear and cyclic peptides. Bull. Chem. Soc. Jpn 56, 3857–3858 (1983).

    Article  CAS  Google Scholar 

  20. Bolon, D. N. & Mayo, S. Enzyme-like proteins by computational design. Proc. Natl Acad. Sci. USA 98, 14272–14279 (2001).

    Article  Google Scholar 

  21. Wei, Y. & Hecht, M. H. Enzyme-like proteins from an unselected library of designed amino acid sequences. Protein Eng. Des. Sel. 17, 67–75 (2004).

    Article  CAS  Google Scholar 

  22. Patel, S. C., Bradley, L. H., Jinadasa, S. P. & Hecht, M. H. Cofactor binding and enzymatic activity in an unevolved superfamily of de novo designed 4-helix bundle proteins. Protein Sci. 18, 1388–1400 (2009).

    Article  CAS  Google Scholar 

  23. Broo, K. S., Brive, L., Ahlberg, P. & Baltzer, L. Catalysis of hydrolysis and transesterification reactions of p-nitrophenyl esters by a designed helix-loop-helix dimer. J. Am. Chem. Soc. 119, 11362–11372 (1997).

    Article  CAS  Google Scholar 

  24. Zastrow, M. L., Peacock, A. F. A., Stuckey, J. A. & Pecoraro, V. L. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nature Chem. 4, 118–123 (2012).

    Article  CAS  Google Scholar 

  25. Der, B. S., Edwards, D. R. & Kuhlman, B. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering. Biochemistry 51, 3933–3940 (2012).

    Article  CAS  Google Scholar 

  26. Verpoort, J. A., Mehta, S. & Edsall, J. T. Esterase activities of human carbonic anhydrases B and C. J. Biol. Chem. 242, 4221–4229 (1967).

    Google Scholar 

  27. Calero, M. & Gasset, M. Fourier transform infrared and circular dichroism spectroscopies for amyloid studies. Methods Mol. Biol. 299, 129–151 (2005).

    CAS  PubMed  Google Scholar 

  28. Yamaguchi, K., Kamatari, Y. O., Fukuoka, M., Miyaji, R. & Kuwata, K. Nearly reversible conformational change of amyloid fibrils as revealed by pH-jump experiments. Biochemistry 52, 6797–6806 (2013).

    Article  CAS  Google Scholar 

  29. Yamaguchi, K., Matsumoto, T. & Kuwata, K. Critical region for amyloid fibril formation of mouse prion protein: unusual amyloidogenic properties of the helix 2 peptide. Biochemistry 47, 13242–13251 (2008).

    Article  CAS  Google Scholar 

  30. Coleman, J. E. & Coleman, R. V. Magnetic circular dichroism of Co(II) carbonic anhydrase. J. Biol. Chem. 247, 4718–4728 (1972).

    CAS  PubMed  Google Scholar 

  31. Spevacek, A. R. et al. Zinc drives a tertiary fold in the prion protein with familial disease mutation sites at the interface. Structure 21, 236–246 (2013).

    Article  CAS  Google Scholar 

  32. Walter, E. D., Stevens, D. J., Visconte, M. P. & Millhauser, G. L. The prion protein is a combined zinc and copper binding protein: Zn2+ alters the distribution of Cu2+ coordination modes. J. Am. Chem. Soc. 129, 15440–15441 (2007).

    Google Scholar 

  33. Donnelly, P. S., Xiao, Z. & Wedd, A. G. Copper and Alzheimer's disease. Curr. Opin. Chem. Biol. 11, 128–133 (2007).

    Article  CAS  Google Scholar 

  34. Chassaing, S. et al. Copper and heme-mediated Aβ toxicity: redox chemistry, Aβ oxidations and anti-ROS compounds. Curr. Top. Med. Chem. 12, 2573–2595 (2012).

    Article  CAS  Google Scholar 

  35. Cassagnes, L-E. et al. The catalytically active copper-amyloid-beta state: coordination site responsible for reactive oxygen species production. Angew. Chem. Int. Ed. 52, 11110–11113 (2013).

    Article  CAS  Google Scholar 

  36. Korendovych, I. V. et al. Computational design of a self-assembling β-peptide oligomer. Org. Lett. 12, 5142–5145 (2010).

    Article  CAS  Google Scholar 

  37. Kuipers, B. J. H. & Gruppen, H. Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography–mass spectrometry analysis. J. Agricult. Food Chem. 55, 5445–5451 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. L. Mack, G. G. Ariotti, R. P. Doyle, M. M. Maye and R. P. Smith for technical assistance and discussions. This work was in part supported by grant no. GM54616 from the National Institutes of Health (to W.F.D.), grant no. 1332349 from the National Science Foundation (NSF) Emerging Frontiers in Research and Innovation (EFRI) program, and an Oak Ridge Associated Universities Ralph E. Powe Junior Faculty Enhancement award to I.V.K. The authors also acknowledge support from the Materials Research Science and Engineering Center programme of the NSF, grant DMR-1120901.

Author information

Authors and Affiliations

Authors

Contributions

C.M.R., Y.S.M., O.V.M., J.S., T.A.S. and X.H. performed the experiments and analysed the data. W.F.D. and I.V.K. conceived and designed the experiments and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to William F. DeGrado or Ivan V. Korendovych.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7531 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rufo, C., Moroz, Y., Moroz, O. et al. Short peptides self-assemble to produce catalytic amyloids. Nature Chem 6, 303–309 (2014). https://doi.org/10.1038/nchem.1894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1894

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing