Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar

Abstract

Just as light scattering from an object results in diffraction patterns, the quantum mechanical nature of molecules can lead to the diffraction of matter waves during molecular collisions. This behaviour manifests itself as rapid oscillatory structures in measured differential cross-sections, and such observable features are sensitive probes of molecular interaction potentials. However, these structures have proved challenging to resolve experimentally. Here, we use a Stark decelerator to form a beam of state-selected and velocity-controlled NO radicals and measure state-to-state differential cross-sections for inelastic collisions of NO with He, Ne and Ar atoms using velocity map imaging. The monochromatic velocity distribution of the NO beam produced scattering images with unprecedented sharpness and angular resolution, thereby fully resolving quantum diffraction oscillations. We found excellent agreement with quantum close-coupling scattering calculations for these benchmark systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the experimental set-up.
Figure 2: Typical velocity-mapped ion images.
Figure 3: Velocity-mapped ion image for inelastic collisions of NO (1/2f) radicals with Ne atoms, probing simultaneously the final states (5/2f) and (11/2e).
Figure 4: Experimental and simulated ion images revealing quantum diffraction oscillations.
Figure 5: Diffraction oscillations for the scattering process NO (1/2f)+ Rg → NO (3/2e)+ Rg for Rg = He, Ne and Ar.
Figure 6: Diffraction oscillations for the scattering process NO (1/2f) + Ne → NO (3/2e) + Ne at a collision energy of 485 cm−1 and 600 cm−1.

Similar content being viewed by others

References

  1. Levine, R. D. & Bernstein, R. B. Molecular Reaction Dynamics and Chemical Reactivity (Oxford Univ. Press, 1987).

  2. Lee, S-H. & Liu, K. in Modern Trends in Chemical Reaction Dynamics: Experiment and Theory Vol. 14, Part II, 1–42 (eds Yang, X. & Liu, K.) (World Scientific, 2004).

    Google Scholar 

  3. Xiao, C. et al. Experimental and theoretical differential cross sections for a four-atom reaction: HD + OH→H2O + D. Science 333, 440–442 (2011).

    Article  CAS  Google Scholar 

  4. Dong, W. et al. Transition-state spectroscopy of partial wave resonances in the F+HD reaction. Science 327, 1501–1502 (2010).

    Article  CAS  Google Scholar 

  5. Chandler, D. W. & Houston, P. L. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87, 1445–1447 (1987).

    Article  CAS  Google Scholar 

  6. Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477–3484 (1997).

    Article  CAS  Google Scholar 

  7. Ashfold, M. N. R. et al. Imaging the dynamics of gas phase reactions. Phys. Chem. Chem. Phys. 8, 26–53 (2006).

    Article  CAS  Google Scholar 

  8. Suits, A. G., Bontuyan, L. S., Houston, P. L. & Whitaker, B. J. Differential cross sections for state-selected products by direct imaging: Ar + NO. J. Chem. Phys. 96, 8618–8620 (1992).

    Article  CAS  Google Scholar 

  9. Kohguchi, H., Suzuki, T. & Alexander, M. H. Fully state-resolved differential cross sections for the inelastic scattering of the open-shell NO molecule by Ar. Science 294, 832–834 (2001).

    Article  CAS  Google Scholar 

  10. Townsend, D. et al. The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 306, 1158–1161 (2004).

    Article  CAS  Google Scholar 

  11. Grubb, M. P. et al. No straight path: roaming in both ground- and excited-state photolytic channels of NO3 → NO + O2 . Science 335, 1075–1078 (2012).

    Article  CAS  Google Scholar 

  12. Lorenz, K. T. et al. Direct measurement of the preferred sense of NO rotation after collision with argon. Science 293, 2063–2066 (2001).

    Article  CAS  Google Scholar 

  13. Eyles, C. J. et al. Interference structures in the differential cross-sections for inelastic scattering of NO by Ar. Nature Chem. 3, 597–602 (2011).

    Article  CAS  Google Scholar 

  14. Lin, J. J., Zhou, J., Shiu, W. & Liu, K. State-specific correlation of coincident product pairs in the F + CD4 reaction. Science 300, 966–969 (2003).

    Article  CAS  Google Scholar 

  15. Yan, S., Wu, Y-T., Zhang, B., Yue, X-F. & Liu, K. Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom? Science 316, 1723–1726 (2007).

    Article  CAS  Google Scholar 

  16. Zhang, W., Kawamata, H. & Liu, K. CH stretching excitation in the early barrier F + CHD3 reaction inhibits CH bond cleavage. Science 325, 303–306 (2009).

    Article  CAS  Google Scholar 

  17. Wang, F., Lin, J-S. & Liu, K. Steric control of the reaction of CH stretch-excited CHD3 with chlorine atom. Science 331, 900–903 (2011).

    Article  CAS  Google Scholar 

  18. Mikosch, J. et al. Imaging nucleophilic substitution dynamics. Science 319, 183–186 (2008).

    Article  CAS  Google Scholar 

  19. Lipciuc, M. L., Buijs, J. B. & Janssen, M. H. M. High resolution slice imaging of a molecular speed distribution. Phys. Chem. Chem. Phys. 8, 219–223 (2006).

    Article  CAS  Google Scholar 

  20. Bethlem, H. L., Berden, G. & Meijer, G. Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558–1561 (1999).

    Article  CAS  Google Scholar 

  21. Van de Meerakker, S. Y. T., Bethlem, H. L., Vanhaecke, N. & Meijer, G. Manipulation and control of molecular beams. Chem. Rev. 112, 4828–4878 (2012).

    Article  CAS  Google Scholar 

  22. Gilijamse, J. J., Hoekstra, S., van de Meerakker, S. Y. T., Groenenboom, G. C. & Meijer, G. Near-threshold inelastic collisions using molecular beams with a tunable velocity. Science 313, 1617–1620 (2006).

    Article  CAS  Google Scholar 

  23. Kirste, M. et al. Quantum-state resolved bimolecular collisions of velocity-controlled OH with NO radicals. Science 338, 1060–1063 (2012).

    Article  CAS  Google Scholar 

  24. Faubel, M. The ‘Fraunhofer theory’ of rotational inelastic scattering of He on small molecules. J. Chem. Phys. 81, 5559–5569 (1984).

    Article  CAS  Google Scholar 

  25. Buck, U., Huisken, F. & Schleusener, J. Diffraction oscillations in rotationally inelastic differential cross sections: HD + D2 . J. Chem. Phys. 68, 5654–5655 (1978).

    Article  CAS  Google Scholar 

  26. Faubel, M., Kohl, K-H., Toennies, J. P., Tang, K. T. & Yung, Y. Y. The He–N2 anisotropic van der Waals potential. Test of a simple model using state-to-state differential scattering cross-sections. Faraday Discuss. Chem. Soc. 73, 205–220 (1982).

    Article  Google Scholar 

  27. Casavecchia, P. in Dynamics of Polyatomic van der Waals Complexes (eds Halberstadt, N. & Janda, K. C.), 123–141 (Plenum, 1990).

    Google Scholar 

  28. Yonekura, N., Gebauer, Ch., Kohguchi, H. & Suzuki, T. A crossed molecular beam apparatus using high-resolution ion imaging. Rev. Sci. Instrum. 70, 3265–3270 (1999).

    Article  CAS  Google Scholar 

  29. Aoiz, F. J., Verdasco, J. E., Herrero, V. J., SáezRábanos, V. & Alexander, M. H. Attractive and repulsive interactions in the inelastic scattering of NO by Ar: a comparison between classical trajectory and close-coupling quantum mechanical results. J. Chem. Phys. 119, 5860 (2003).

    Article  CAS  Google Scholar 

  30. Kłos, J. et al. Ab initio studies of the interaction potential for the Xe–NO (X2Π) van der Waals complex: bound states and fully quantum and quasi-classical scattering. J. Chem. Phys. 137, 014312 (2012).

    Article  Google Scholar 

  31. Warntjes, J. B. M., Robicheaux, F., Bakker, J. M. & Noordam, L. D. Autoionizing Rydberg states of NO in strong electric fields. J. Chem. Phys. 111, 2556–2564 (1999).

    Article  CAS  Google Scholar 

  32. Yan, B. et al. A new high intensity and short-pulse molecular beam valve. Rev. Sci. Instrum. 84, 023102 (2013).

    Article  CAS  Google Scholar 

  33. Gijsbertsen, A., Linnartz, H., Taatjes, C. A. & Stolte, S. Quantum interference as the source of steric asymmetry and parity propensity rules in NO-rare gas inelastic scattering. J. Am. Chem. Soc. 128, 8777–8789 (2006).

    Article  CAS  Google Scholar 

  34. Chefdeville, S. et al. Observation of partial wave resonances in low-energy O2–H2 inelastic collisions. Science 341, 1094–1096 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is supported financially by the Netherlands Organization for Scientific Research (NWO). S.Y.T.v.d.M. acknowledges support from the NWO via a VIDI grant, and from the European Research Council via a Starting Grant. The authors thank D. Parker for discussions and general support and the Fritz-Haber-Institute in Berlin for loan of equipment. The authors thank K. Liu for discussions about the analysis of scattering images and J. Kłos, H. Cybulski, B. Fernández, Y. Endo and M. Alexander for providing their PESs. The authors thank B. Nichols and S. Chefdeville for assistance during part of the measurements, R. Rammeloo for developing software to simulate ion images, and A. van Roij, L. Gerritsen, C. Berkhout and P. Claus for expert technical support.

Author information

Authors and Affiliations

Authors

Contributions

The research project was conceived and supervised by S.Y.T.v.d.M. The experiments were carried out by A.v.Z. and J.O. Data analysis and interpretation was performed by A.v.Z., J.O., S.N.V. and S.Y.T.v.d.M. Theoretical calculations were performed by J.O., A.v.d.A. and G.C.G. The paper was written by S.Y.T.v.d.M. with contributions from all authors. All authors contributed to discussions about the content of the paper.

Corresponding author

Correspondence to Sebastiaan Y. T. van de Meerakker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 925 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Zastrow, A., Onvlee, J., Vogels, S. et al. State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar. Nature Chem 6, 216–221 (2014). https://doi.org/10.1038/nchem.1860

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing