Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ion mobility–mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility

Abstract

Rotary ATPases play fundamental roles in energy conversion as their catalytic rotation is associated with interdomain fluctuations and heterogeneity of conformational states. Using ion mobility mass spectrometry we compared the conformational dynamics of the intact ATPase from Thermus thermophilus with those of its membrane and soluble subcomplexes. Our results define regions with enhanced flexibility assigned to distinct subunits within the overall assembly. To provide a structural context for our experimental data we performed molecular dynamics simulations and observed conformational changes of the peripheral stalks that reflect their intrinsic flexibility. By isolating complexes at different phases of cell growth and manipulating nucleotides, metal ions and pH during isolation, we reveal differences that can be related to conformational changes in the Vo complex triggered by ATP binding. Together these results implicate nucleotides in modulating flexibility of the stator components and uncover mechanistic detail that underlies operation and regulation in the context of the holoenzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flexibility of intact TtATPase and its subcomplexes assessed by IM–MS.
Figure 2: CCS measurements for the TtATPase ICL12 (Vo) and CL12 subcomplexes in different TtATPase preparations.
Figure 3: Nucleotide-associated regulatory mechanism established by IM–MS.
Figure 4: In vacuo MD simulations of the catalytic head (V1′) of TtATPase.

Similar content being viewed by others

References

  1. von Ballmoos, C., Cook, G. M. & Dimroth, P. Unique rotary ATP synthase and its biological diversity. Annu. Rev. Biophys. 37, 43–64 (2008).

    Article  CAS  Google Scholar 

  2. Stewart, A. G., Sobti, M., Harvey, R. P. & Stock, D. Rotary ATPases: models, machine elements and technical specifications. Bioarchitecture 3, 2–12 (2013).

    Article  Google Scholar 

  3. Nakano, M. et al. ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus. J. Biol. Chem. 283, 20789–20796 (2008).

    Article  CAS  Google Scholar 

  4. Feniouk, B. A., Suzuki, T & Yoshida, M. Regulatory interplay between proton motive force, ADP, phosphate, and subunit epsilon in bacterial ATP synthase. J. Biol. Chem. 282, 764–772 (2007).

    Article  CAS  Google Scholar 

  5. Muench, S. P., Trinick, J. & Harrison, M. A. Structural divergence of the rotary ATPases. Q. Rev. Biophys. 44, 311–356 (2011).

    Article  CAS  Google Scholar 

  6. Oot, R. A., Huang, L. S., Berry, E. A. & Wilkens, S. Crystal structure of the yeast vacuolar ATPase heterotrimeric EGC(head) peripheral stalk complex. Structure 20, 1881–1892 (2012).

    Article  CAS  Google Scholar 

  7. Yokoyama, K. et al. Subunit arrangement in V-ATPase from Thermus thermophilus. J. Biol. Chem. 278, 42686–42691 (2003).

    Article  CAS  Google Scholar 

  8. Barrera, N. P. et al. Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nature Methods 6, 585–587 (2009).

    Article  CAS  Google Scholar 

  9. Barrera, N. P., Di Bartolo, N., Booth, P. J. & Robinson, C. V. Micelles protect membrane complexes from solution to vacuum. Science 321, 243–246 (2008).

    Article  CAS  Google Scholar 

  10. Wang, S. C. et al. Ion mobility mass spectrometry of two tetrameric membrane protein complexes reveals compact structures and differences in stability and packing. J. Am. Chem. Soc. 132, 15468–15470 (2010).

    Article  CAS  Google Scholar 

  11. Borysik, A. J., Hewitt, D. J. & Robinson, C. V. Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas-phase. J. Am. Chem. Soc. 135, 6078–6083 (2013).

    Article  CAS  Google Scholar 

  12. Bohrer, B. C., Merenbloom, S. I., Koeniger, S. L., Hilderbrand, A. E. & Clemmer, D. E. Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Anal. Chem. 1, 293–327 (2008).

    Article  CAS  Google Scholar 

  13. Bleiholder, C., Dupuis, N. F., Wyttenbach, T. & Bowers, M. T. Ion mobility–mass spectrometry reveals a conformational conversion from random assembly to beta-sheet in amyloid fibril formation. Nature Chem. 3, 172–177 (2011).

    Article  CAS  Google Scholar 

  14. Grabenauer, M. et al. Conformational stability of Syrian hamster prion protein PrP(90–231). J. Am. Chem. Soc. 132 (26), 8816–8818 (2010).

    Article  CAS  Google Scholar 

  15. Dupuis, N. F., Wu, C., Shea, J. E. & Bowers, M. T. Human islet amyloid polypeptide monomers form ordered beta-hairpins: a possible direct amyloidogenic precursor. J. Am. Chem. Soc. 131, 18283–18292 (2009).

    Article  CAS  Google Scholar 

  16. Michaelevski, I., Kirshenbaum, N. & Sharon, M. T-wave ion mobility–mass spectrometry: basic experimental procedures for protein complex analysis. J. Vis. Exp. 41, e1985, doi:10.3791/1985 (2010).

  17. Ruotolo, B. T., Benesch, J. L., Sandercock, A. M., Hyung, S. J. & Robinson, C. V. Ion mobility–mass spectrometry analysis of large protein complexes. Nature Protocols 3, 1139–1152 (2008).

    Article  CAS  Google Scholar 

  18. Hall, Z., Politis, A. & Robinson, C. V. Structural modeling of heteromeric protein complexes from disassembly pathways and ion mobility–mass spectrometry. Structure 20, 1596–1609 (2012).

    Article  CAS  Google Scholar 

  19. Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature 450, 683–694 (2007).

    Article  CAS  Google Scholar 

  20. Hall, Z., Politis, A., Bush, M. F., Smith, L. J. & Robinson, C. V. Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J. Am. Chem. Soc. 134, 3429–3438 (2012).

    Article  CAS  Google Scholar 

  21. Zhou, M. et al. Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334, 380–385 (2011).

    Article  CAS  Google Scholar 

  22. Barrera, N. P., Zhou, M. & Robinson, C. V. The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell. Biol. 23, 1–8 (2013).

    Article  CAS  Google Scholar 

  23. Morgner, N., Montenegro, F., Barrera, N. P. & Robinson, C. V. Mass spectrometry – from peripheral proteins to membrane motors. J. Mol. Biol. 423, 1–13 (2012).

    Article  CAS  Google Scholar 

  24. Bush, M. F. et al. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal. Chem. 82, 9557–9565 (2010).

    Article  CAS  Google Scholar 

  25. Zhong, Y., Hyung, S. J. & Ruotolo, B. T. Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions. Analyst 136, 3534–3541 (2011).

    Article  CAS  Google Scholar 

  26. Shvartsburg, A. A. & Smith, R. D. Fundamentals of traveling wave ion mobility spectrometry. Anal. Chem. 80, 9689–9699 (2008).

    Article  CAS  Google Scholar 

  27. Giles, K. et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid. Commun. Mass Spectrom. 18, 2401–2414 (2004).

    Article  CAS  Google Scholar 

  28. Nagamatsu, Y., Takeda, K., Kuranaga, T., Numoto, N. & Miki, K. Origin of asymmetry at the intersubunit interfaces of V1-ATPase from Thermus thermophilus. J. Mol. Biol. 425, 2699–2708 (2013).

    Article  CAS  Google Scholar 

  29. Suhre, K. & Sanejouand, Y. H. ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res. 32, W610–W614 (2004).

    Article  CAS  Google Scholar 

  30. Drory, O., Frolow, F. & Nelson, N. Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep. 5, 1148–1152 (2004).

    Article  CAS  Google Scholar 

  31. Lee, L. K., Stewart, A. G., Donohoe, M., Bernal, R. A. & Stock, D. The structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase. Nature Struct. Mol. Biol. 17, 373–378 (2010).

    Article  CAS  Google Scholar 

  32. Bernal, R. A. & Stock, D. Three-dimensional structure of the intact Thermus thermophilus H+-ATPase/synthase by electron microscopy. Structure 12, 1789–1798 (2004).

    Article  CAS  Google Scholar 

  33. Stewart, A. G., Lee, L. K., Donohoe, M., Chaston, J. J. & Stock, D. The dynamic stator stalk of rotary ATPases. Nature Commun. 3, 687 (2012).

    Article  Google Scholar 

  34. Kinosita, K. Jr, Yasuda, R., Noji, H. & Adachi, K. A rotary molecular motor that can work at near 100% efficiency. Philos. Trans. R. Soc. Lond. B 355, 473–489 (2000).

    Article  CAS  Google Scholar 

  35. Esteban, O., Christ, D. & Stock, D. Purification of molecular machines and nanomotors using phage-derived monoclonal antibody fragments. Methods Mol. Biol. 996, 203–217 (2013).

    Article  CAS  Google Scholar 

  36. Arai, S. et al. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 493, 703–707 (2013).

    Article  CAS  Google Scholar 

  37. Giles, K., Williams, J. P. & Campuzano, I. Enhancements in travelling wave ion mobility resolution. Rapid. Commun. Mass Spectrom. 25, 1559–1566 (2011).

    Article  CAS  Google Scholar 

  38. Pagel, K., Natan, E., Hall, Z., Fersht, A. R. & Robinson, C. V. Intrinsically disordered p53 and its complexes populate compact conformations in the gas phase. Angew. Chem. Int. Ed. 52, 361–365 (2013).

    Article  CAS  Google Scholar 

  39. Armbruster, A. et al. Evidence for major structural changes in subunit C of the vacuolar ATPase due to nucleotide binding. FEBS Lett. 579, 1961–1967 (2005).

    Article  Google Scholar 

  40. Lau, W. C. & Rubinstein, J. L. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481, 214–218 (2012).

    Article  CAS  Google Scholar 

  41. Beis, I. & Newsholme, E. A. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J. 152, 23–32 (1975).

    Article  CAS  Google Scholar 

  42. Schneider, D. A. & Gourse, R. L. Relationship between growth rate and ATP concentration in Escherichia coli: a bioassay for available cellular ATP. J. Biol. Chem. 279, 8262–8268 (2004).

    Article  CAS  Google Scholar 

  43. Tani, K. et al. Visualization of two distinct states of disassembly in the bacterial V-ATPase from Thermus thermophilus. Microscopy 62 (4), 467–474 (2013).

    Article  CAS  Google Scholar 

  44. Armbruster, A. et al. Structural analysis of the stalk subunit Vma5p of the yeast V-ATPase in solution. FEBS Lett. 570, 119–125 (2004).

    Article  CAS  Google Scholar 

  45. Hernandez, H. & Robinson, C. V. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nature Protocols 2, 715–726 (2007).

    Article  CAS  Google Scholar 

  46. van der Spoel, D., et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  CAS  Google Scholar 

  47. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article  CAS  Google Scholar 

  48. Reimann, C. T., Velazquez, I. & Tapia, O. Proteins in vacuo. Denaturation of highly-charged lysozyme studied by molecular dynamics simulations. J. Phys. Chem. B 102, 9344–9352 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Wellcome Trust (M.Z. and C.V.R.) and by a PROSPECTS (HEALTHF4-2008-201648) grant within the Research Framework of the European Union (A.P. and C.V.R.), together with Engineering and Physical Sciences Research Council funding for research scientists with caring responsibilities (M.Z.), funding from the Royal Society and an European Research Council investigator award Integral Membrane Proteins Resolution of Stoichiometry and Structure (IMPRESS) (C.V.R.). D.S., R.B.D. and A.G.S. are funded by Australian National Health and Medical Research Council grants 1004620, 1022143 and 1047004, respectively.

Author information

Authors and Affiliations

Authors

Contributions

C.V.R. and D.S designed the research, M.Z. conducted all IM–MS experiments and analysed the data, R.B.D. purified TtATPases, A.P. and A.G.S. performed the modelling, A.P. conducted MD simulations and all CCS calculations, I.L. carried out the MS analysis of dAb:TtATPase binding, K.J.W. conducted the Western blot experiments, and M.Z. and C.V.R. and A.P. wrote the paper.

Corresponding authors

Correspondence to Min Zhou or Carol V. Robinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2158 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 12413 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 9252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Politis, A., Davies, R. et al. Ion mobility–mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility. Nature Chem 6, 208–215 (2014). https://doi.org/10.1038/nchem.1868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1868

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing