Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembling hydrogel scaffolds for photocatalytic hydrogen production

Subjects

Abstract

Integration into a soft material of all the molecular components necessary to generate storable fuels is an interesting target in supramolecular chemistry. The concept is inspired by the internal structure of photosynthetic organelles, such as plant chloroplasts, which colocalize molecules involved in light absorption, charge transport and catalysis to create chemical bonds using light energy. We report here on the light-driven production of hydrogen inside a hydrogel scaffold built by the supramolecular self-assembly of a perylene monoimide amphiphile. The charged ribbons formed can electrostatically attract a nickel-based catalyst, and electrolyte screening promotes gelation. We found the emergent phenomenon that screening by the catalyst or the electrolytes led to two-dimensional crystallization of the chromophore assemblies and enhanced the electronic coupling among the molecules. Photocatalytic production of hydrogen is observed in the three-dimensional environment of the hydrogel scaffold and the material is easily placed on surfaces or in the pores of solid supports.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembly of PMI CAs into supramolecular ribbons.
Figure 2: Gelation of CA ribbons with salts.
Figure 3: Charge screening induces crystallization within supramolecular polymers.
Figure 4: Optical properties of CA solutions and crystalline gels.
Figure 5: Photocatalytic H2 production.

Similar content being viewed by others

References

  1. Umena, Y., Kawakami, K., Shen, J-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Amunts, A., Drory, O. & Nelson, N. The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447, 58–63 (2007).

    CAS  PubMed  Google Scholar 

  3. Hull, J. F. et al. Highly active and robust Cp* iridium complexes for catalytic water oxidation. J. Am. Chem. Soc. 131, 8730–8731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Karunadasa, H. I. et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Han, Z., Qiu, F., Eisenberg, R., Holland, P. L. & Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Boettcher, S. W. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Veldkamp, B. S. et al. Photoinitiated multi-step charge separation and ultrafast charge transfer induced dissociation in a pyridyl-linked photosensitizer–cobaloxime assembly. Energy Environ. Sci. 6, 1917–1928 (2013).

    Article  CAS  Google Scholar 

  11. Poddutoori, P. et al. Photoinitiated multistep charge separation in ferrocene–zinc porphyrin–diiron hydrogenase model complex triads. Energy Environ. Sci. 4, 2441–2450 (2011).

    Article  CAS  Google Scholar 

  12. Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Babu, S. S., Praveen, V. K. & Ajayaghosh, A. Functional p-gelators and their applications. Chem. Rev. 114, 1973–2129 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Feiler, L., Langhals, H. & Polborn, K. Synthesis of perylene-3,4-dicarboximides – novel highly photostable fluorescent dyes. Liebigs Ann. 1229–1244 (1995).

  16. Lefler, K. M., Co, D. T. & Wasielewski, M. R. Self-assembly-induced ultrafast photodriven charge separation in perylene-3,4-dicarboximide-based hydrogen-bonded foldamers. J. Phys. Chem. Lett. 3, 3798–3805 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Samorì, P. et al. Self-assembly of perylene monoimide substituted hexa-peri-hexabenzocoronenes: dyads and triads at surfaces. Adv. Mater. 18, 1317–1321 (2006).

    Article  Google Scholar 

  18. Bullock, J. E. et al. Photophysics and redox properties of rylene imide and diimide dyes alkylated ortho to the imide groups. J. Phys. Chem. B 114, 1794–1802 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Cui, H. et al. Spontaneous and X-ray-triggered crystallization at long range in self-assembling filament networks. Science 327, 555–559 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Tasios, N. et al. Self-assembly, dynamics, and phase transformation kinetics of donor–acceptor substituted perylene derivatives. J. Am. Chem. Soc. 132, 7478–7487 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Shahar, C. et al. Self-assembly of light-harvesting crystalline nanosheets in aqueous media. ACS Nano 7, 3547–3556 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Würthner, F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun. 1564–1579 (2004).

  23. Spano, F. C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Zsila, F., Bikádi, Z., Keresztes, Z., Deli, J. & Simonyi, M. Investigation of the self-organization of lutein and lutein diacetate by electronic absorption, circular dichroism spectroscopy, and atomic force microscopy. J. Phys. Chem. B 105, 9413–9421 (2001).

    Article  CAS  Google Scholar 

  25. Spano, F. C., Meskers, S. C. J., Hennebicq, E. & Beljonne, D. Probing excitation delocalization in supramolecular chiral stacks by means of circularly polarized light: experiment and modeling. J. Am. Chem. Soc. 129, 7044–7054 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Agranovich, V. M. Excitations in Organic Solids (Oxford Univ. Press, 2009).

    Google Scholar 

  27. Okeyoshi, K. & Yoshida, R. Hydrogen generating gel systems induced by visible light. Soft Matter 5, 4118–4123 (2009).

    Article  CAS  Google Scholar 

  28. Yuhas, B. D. et al. Biomimetic multifunctional porous chalcogels as solar fuel catalysts. J. Am. Chem. Soc. 133, 7252–7255 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, D-L. et al. Photosensitized hydrogen evolution from water using conjugated polymers wrapped in dendrimeric electrolytes. J. Am. Chem. Soc. 126, 12084–12089 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Utschig, L. M. et al. Photocatalytic hydrogen production from noncovalent biohybrid photosystem I/Pt nanoparticle complexes. J. Phys. Chem. Lett. 2, 236–241 (2011).

    Article  CAS  Google Scholar 

  31. Wilson, A. D. et al. Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases. Proc. Natl Acad. Sci. USA 104, 6951–6956 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McLaughlin, M. P., McCormick, T. M., Eisenberg, R. & Holland, P. L. A stable molecular nickel catalyst for the homogeneous photogeneration of hydrogen in aqueous solution. Chem. Commun. 47, 7989–7991 (2011).

    Article  CAS  Google Scholar 

  33. Das, A., Han, Z., Haghighi, M. G. & Eisenberg, R. Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange. Proc. Natl Acad. Sci. USA 110, 16716–16723 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jain, A. et al. Incorporating peptides in the outer-coordination sphere of bioinspired electrocatalysts for hydrogen production. Inorg. Chem. 50, 4073–4085 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0001059. Use of the Advanced Photon Source (APS) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. SAXS experiments were performed at the DuPont–Northwestern–Dow Collaborative Access Team (DND-CAT) located at Sector 5 of APS. DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company and Northwestern University. WAXS experiments were conducted at BioCARS Sector 14 at the APS supported by grants from the National Center for Research Resources (5P41RR007707) and the National Institute of General Medical Sciences (8P41GM103543) from the National Institutes of Health. GIXS data were collected at Sector 12 of the APS. We thank the Biological Imaging Facility at Northwestern for the use of TEM equipment, and the Electron Probe Instrumentation Center facilities of the Northwestern University Atomic and Nanoscale Characterization Experimental Center for the use of SEM equipment. NMR and MS equipment at the Integrated Molecular Structure Education and Research Center was supported by the National Science Foundation under CHE-9871268. The authors acknowledge J. Lehrman and Y. Velichko of the Stupp laboratory and K. Lefler, W. Salamant, M. Vagnini, B. Veldkamp and D. Gardner of the Wasielewski laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.S.W., R.V.K., L.C.P., M.R.W. and S.I.S designed the experiments. A.S.W., R.V.K., M.M., A.R.K., A.P.S.S. and D.J.K. performed the experimental work. A.S.W., R.V.K., L.C.P., M.R.W. and S.I.S. analysed the data and wrote the paper.

Corresponding authors

Correspondence to Michael R. Wasielewski or Samuel I. Stupp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1958 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weingarten, A., Kazantsev, R., Palmer, L. et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nature Chem 6, 964–970 (2014). https://doi.org/10.1038/nchem.2075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing