Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ X-ray snapshot analysis of transient molecular adsorption in a crystalline channel

Subjects

Abstract

Molecular adsorption is a fundamental phenomenon in porous materials and is usually characterized by the efficiency and selectivity of molecular separations and reactions. However, for functional porous materials, analysis of the dynamic behaviour of molecular adsorbents is a major challenge. Here, we use in situ single-crystal X-ray diffraction to analyse multi-step molecular adsorption in a crystalline nanochannel of a metal-macrocycle framework. The pore surface of the metal-macrocycle framework crystal contains five different enantiomerically paired binding pockets, to which the adsorption of a (1R)-1-(3-chlorophenyl)ethanol solution was monitored with time. The resulting X-ray snapshot analyses suggest that the guest adsorption process takes a two-step pathway before equilibrium, in which the guest molecule is temporarily trapped by a neighbouring binding site. This demonstrates the potential for using X-ray analyses to visualize a transient state during a non-covalent self-assembly process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of in situ X-ray observation of molecular adsorption within a liquid-filled porous crystal.
Figure 2: Synthesis and unit pore structure of a single-crystalline nanochannel of an MMF.
Figure 3: Experimental sequence for in situ X-ray snapshot analyses.
Figure 4: In situ X-ray crystallographic study of MMF containing (1R)-1-(3-chlorophenyl)ethanol.
Figure 5: Side view of MMF pores showing three observed guest binding modes in the (P)-Syn-tail and (P)-ellipsoidal pockets in the third XRD measurement.

Similar content being viewed by others

References

  1. Van Bekkum, H., Flanigen, E. M., Jacobs, P. A. & Jansen, J. C. (eds) Introduction to Zeolite Science and Practice (Elsevier, 2001).

    Google Scholar 

  2. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  3. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  Google Scholar 

  4. Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. Design, chirality, and flexibility in nanoporous molecule-based materials. Acc. Chem. Res. 38, 273–282 (2005).

    Article  CAS  Google Scholar 

  5. Holst, J. R., Trewin, A. & Cooper, A. I. Porous organic molecules. Nature Chem. 2, 915–920 (2010).

    Article  CAS  Google Scholar 

  6. Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. 46, 8342–8356 (2007).

    Article  CAS  Google Scholar 

  7. Bezzu, C. G., Helliwell, M., Warren, J. E., Allan, D. R. & Mckeown, N. B. Heme-like coordination chemistry within nanoporous molecular crystals. Science 327, 1627–1630 (2010).

    Article  CAS  Google Scholar 

  8. Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    Article  CAS  Google Scholar 

  9. Hasell, T., Schmidtmann, M. & Cooper, A. I. Molecular doping of porous organic cages. J. Am. Chem. Soc. 133, 14920–14923 (2011).

    Article  CAS  Google Scholar 

  10. Li, J-R., Sculley, J. & Zhou, H-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    Article  CAS  Google Scholar 

  11. Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    Article  CAS  Google Scholar 

  12. Yoon, M., Srirambalaji, R. & Kim, K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1231 (2012).

    Article  CAS  Google Scholar 

  13. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 436, 238–241 (2005).

    Article  CAS  Google Scholar 

  14. Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).

    Article  CAS  Google Scholar 

  15. Jacobs, T. et al. In situ X-ray structural studies of a flexible host responding to incremental gas loading. Angew. Chem. Int. Ed. 51, 4913–4916 (2012).

    Article  CAS  Google Scholar 

  16. Krishna, R. Diffusion in porous crystalline materials. Chem. Soc. Rev. 41, 3099–3118. (2012).

    Article  CAS  Google Scholar 

  17. Hibbe, F. et al. The nature of surface barriers on nanoporous solids explored by microimaging of transient guest distributions. J. Am. Chem. Soc. 133, 2804–2807 (2011).

    Article  CAS  Google Scholar 

  18. Fletcher, A. J., Cussen, E. J., Bradshaw, D., Rosseinsky, M. J. & Thomas, K. M. Adsorption of gases and vapors on nanoporous Ni2(4,4′-bipyridine)3(NO3)4 metal–organic framework materials templated with methanol and ethanol: structural effects in adsorption kinetics, J. Am. Chem. Soc. 126, 9750–9759 (2004).

    Article  CAS  Google Scholar 

  19. Wang, C. & Lin, W. Diffusion-controlled luminescence quenching in metal–organic frameworks. J. Am. Chem. Soc. 133, 4232–4235 (2011).

    Article  CAS  Google Scholar 

  20. Han, S., Hermans, T. M., Fuller, P. E., Wei, Y. & Grzybowski, B. A. Transport into metal–organic frameworks from solution is not purely diffusive. Angew. Chem. Int. Ed. 51, 2662–2666 (2012).

    Article  CAS  Google Scholar 

  21. Liao, Y., Yang, S. K., Koh, K., Matzger, A. J. & Biteen, J. S. Heterogeneous single-molecule diffusion in one-, two-, and three-dimensional microporous coordination polymers: directional, trapped, and immobile guests. Nano Lett. 12, 3080–3085 (2012).

    Article  CAS  Google Scholar 

  22. Mitra, T. et al. Molecular shape sorting using molecular organic cages. Nature Chem. 5, 276–281 (2013).

    Article  CAS  Google Scholar 

  23. Tashiro, S., Kubota, R. & Shionoya, M. Metal-macrocycle framework (MMF): supramolecular nano-channel surfaces with shape sorting capability. J. Am. Chem. Soc. 134, 2461–2464 (2012).

    Article  CAS  Google Scholar 

  24. Kubota, R., Tashiro, S., Umeki, T. & Shionoya, M. Non-covalent surface modification of metal-macrocycle framework with mono-substituted benzenes. Supramol. Chem. 24, 867–877 (2012).

    Article  CAS  Google Scholar 

  25. Tashiro, S. & Shionoya, M. Cavity-assembled porous solids (CAPS) for nanospace-specific funcitons. Bull. Chem. Soc. Jpn 87, 643–654 (2014).

    Article  CAS  Google Scholar 

  26. Tashiro, S., Umeki, T., Kubota, R. & Shionoya, M. Simultaneous arrangement of up to three different molecules on the pore surface of a metal-macrocycle framework: cooperation and competition. Angew. Chem. Int. Ed. 53, 8310–8315 (2014).

    Article  CAS  Google Scholar 

  27. Coppens, P., Vorontsov, I. I., Graber, T., Gembicky, M. & Kovalevsky, A. Y. The structure of short-lived excited states of molecular complexes by time-resolved X-ray diffraction. Acta Crystallogr. A 61, 162–172 (2005).

    Article  Google Scholar 

  28. Cole, J. M. Single-crystal X-ray diffraction studies of photo-induced molecular species. Chem. Soc. Rev. 33, 501–513 (2004).

    Article  CAS  Google Scholar 

  29. Kawano, M., Kobayashi, Y., Ozeki, T. & Fujita, M. Direct crystallographic observation of a coordinatively unsaturated transition-metal complex in situ generated within a self-assembled cage. J. Am. Chem. Soc. 128, 6558–6559 (2006).

    Article  CAS  Google Scholar 

  30. Moffat, K. Time-resolved biochemical crystallography: a mechanistic perspective. Chem. Rev. 101, 1569–1582 (2001).

    Article  CAS  Google Scholar 

  31. Kovaleva, E. G. & Lipscomb, J. D. Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science 316, 453–457 (2007).

    Article  CAS  Google Scholar 

  32. Kawamichi, T., Haneda, T., Kawano, M. & Fujita, M. X-ray observation of a transient hemiaminal trapped in a porous network. Nature 461, 633–635 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by KAKENHI (nos. 21225003 and 23655117), the Japan Society for the Promotion of Science and MEXT, Japan. The authors acknowledge Takasago International Corporation for the provision of (1R)-1-(3-chlorophenyl)ethanol. The authors thank J. Tucker and J-L. Duprey for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M. Shionoya and S.T. designed the project and analysed the results. All authors prepared the manuscript. R.K. performed the experimental work. M. Shiro confirmed the validity of the X-ray crystallographic analysis.

Corresponding author

Correspondence to Mitsuhiko Shionoya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2175 kb)

Supplementary information

Crystallographic data for compound MMF_time1 (CIF 5595 kb)

Supplementary information

Crystallographic data for compound MMF_time2 (CIF 8022 kb)

Supplementary information

Crystallographic data for compound MMF_time3 (CIF 8013 kb)

Supplementary information

Crystallographic data for compound MMF_time4 (CIF 7958 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, R., Tashiro, S., Shiro, M. et al. In situ X-ray snapshot analysis of transient molecular adsorption in a crystalline channel. Nature Chem 6, 913–918 (2014). https://doi.org/10.1038/nchem.2044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing