Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-energy spectrum of iron–sulfur clusters directly from many-particle quantum mechanics

Abstract

Iron–sulfur clusters are a universal biological motif. They carry out electron transfer, redox chemistry and even oxygen sensing, in diverse processes including nitrogen fixation, respiration and photosynthesis. Their low-lying electronic states are key to their remarkable reactivity, but they cannot be directly observed. Here, we present the first ever quantum calculation of the electronic levels of [2Fe–2S] and [4Fe–4S] clusters free from any model assumptions. Our results highlight the limitations of long-standing models of their electronic structure. In particular, we demonstrate that the widely used Heisenberg double exchange model underestimates the number of states by one to two orders of magnitude, which can conclusively be traced to the absence of Fe dd excitations, thought to be important in these clusters. Furthermore, the electronic energy levels of even the same spin are dense on the scale of vibrational fluctuations and this provides a natural explanation for the ubiquity of these clusters in catalysis in nature.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model clusters and many-electron wavefunctions used in this work.
Figure 2: Ab initio levels of [Fe2S2(SCH3)4]2 and corresponding model fits.
Figure 3: Ab initio levels of [Fe2S2(SCH3)4]3− and corresponding model fits.
Figure 4: Origin of the dense manifold in the reduced dimer.
Figure 5: Spin pairings in the [4Fe–4S] cluster.
Figure 6: Energy levels of the [4Fe–4S] cluster.

Similar content being viewed by others

References

  1. Beinert, H., Holm, R. H. & Münck, E. Iron–sulfur clusters: nature's modular, multipurpose structures. Science 277, 653–659 (1997).

    CAS  PubMed  Google Scholar 

  2. Johnson, D. C., Dean, D. R., Smith, A. D. & Johnson, M. K. Structure, function, and formation of biological iron–sulfur clusters. Annu. Rev. Biochem. 74, 247–281 (2005).

    CAS  PubMed  Google Scholar 

  3. Noodleman, L., Peng, C. Y., Case, D. A. & Mouesca, J. M. Orbital interactions, electron delocalization and spin coupling in iron–sulfur clusters. Coord. Chem. Rev. 144, 199–244 (1995).

    CAS  Google Scholar 

  4. Zener, C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951).

    CAS  Google Scholar 

  5. Anderson, P. W. & Hasegawa, H. Considerations on double exchange. Phys. Rev. 100, 675–681 (1955).

    CAS  Google Scholar 

  6. Girerd, J-J. Electron transfer between magnetic ions in mixed valence binuclear systems. J. Chem. Phys. 79, 1766–1775 (1983).

    CAS  Google Scholar 

  7. Noodleman, L. & Baerends, E. J. Electronic structure, magnetic properties, ESR, and optical spectra for 2-iron ferredoxin models by LCAO-Xα valence bond theory. J. Am. Chem. Soc. 106, 2316–2327 (1984).

    CAS  Google Scholar 

  8. Noodleman, L. & Davidson, E. R. Ligand spin polarization and antiferromagnetic coupling in transition metal dimers. Chem. Phys. 109, 131–143 (1986).

    Google Scholar 

  9. Papaefthymiou, V., Girerd, J. J., Moura, I., Moura, J. J. G. & Münck, E. Moessbauer study of D. gigas ferredoxin II and spin-coupling model for Fe3S4 cluster with valence delocalization. J. Am. Chem. Soc. 109, 4703–4710 (1987).

    CAS  Google Scholar 

  10. Blondin, G. & Girerd, J. J. Interplay of electron exchange and electron transfer in metal polynuclear complexes in proteins or chemical models. Chem. Rev. 90, 1359–1376 (1990).

    CAS  Google Scholar 

  11. Borshch, S. A., Kotov, I. N. & Bersuker, I. B. A vibronic model for exchange-coupled mixed-valence dimers. Chem. Phys. Lett. 111, 264–270 (1984).

    CAS  Google Scholar 

  12. Labeguerie, P. et al. Is it possible to determine rigorous magnetic Hamiltonians in spin s = 1 systems from density functional theory calculations? J. Chem. Phys. 129, 154110 (2008).

    PubMed  Google Scholar 

  13. Gibson, J. F., Hall, D. O., Thornley, J. H. & Whatley, F. R. The iron complex in spinach ferredoxin. Proc. Natl Acad. Sci. USA 56, 987–990 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Brintzinger, H., Palmer, G. & Sands, R. H. On the ligand field of iron in ferredoxin from spinach chloroplasts and related nonheme iron enzymes. Proc. Natl Acad. Sci. USA 55, 397–404 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rius, G. & Lamotte, B. Single-crystal ENDOR study of an 57Fe-enriched iron–sulfur [Fe4S4]3+ cluster. J. Am. Chem. Soc. 111, 2464–2469 (1989).

    CAS  Google Scholar 

  16. Mouesca, J. M., Lamotte, B. & Rius, G. Comparison between spin population distributions in two different [Fe4S4]3+ clusters by proton ENDOR in single crystals of a synthetic model compound. J. Inorg. Biochem. 43, 251–270 (1991).

    Google Scholar 

  17. Bertini, I., Briganti, F., Luchinat, C., Scozzafava, A. & Sola, M. Proton NMR spectroscopy and the electronic structure of the high potential iron–sulfur protein from Chromatium vinosum. J. Am. Chem. Soc. 113, 1237–1245 (1991).

    CAS  Google Scholar 

  18. Banci, L. et al. Proton NMR spectra of oxidized high-potential iron–sulfur protein (HiPIP) from Rhodocyclus gelatinosus. A model for oxidized HiPIPs. Inorg. Chem. 30, 4517–4524 (1991).

    CAS  Google Scholar 

  19. Papaefthymiou, V., Millar, M. M. & Muenck, E. Moessbauer and EPR studies of a synthetic analog for the iron–sulfur Fe4S4 core of oxidized and reduced high-potential iron proteins. Inorg. Chem. 25, 3010–3014 (1986).

    CAS  Google Scholar 

  20. Kappl, R., Ebelshäuser, M., Hannemann, F., Bernhardt, R. & Hüttermann, J. Probing electronic and structural properties of the reduced [2Fe–2S] cluster by orientation-selective 1H ENDOR spectroscopy: adrenodoxin versus Rieske iron–sulfur protein. Appl. Magn. Reson. 30, 427–459 (2006).

    CAS  Google Scholar 

  21. Maurice, R., Guihery, N., Bastardis, R. & de Graaf, C. Rigorous extraction of the anisotropic multispin Hamiltonian in bimetallic complexes from the exact electronic Hamiltonian. J. Chem. Theor. Comput. 6, 55–65 (2009).

    Google Scholar 

  22. Noodleman, L., Norman, J. G., Osborne, J. H., Aizman, A. & Case, D. A. Models for ferredoxins: electronic structures of iron–sulfur clusters with one, two, and four iron atoms. J. Am. Chem. Soc. 107, 3418–3426 (1985).

    CAS  Google Scholar 

  23. Mouesca, J-M., Chen, J. L., Noodleman, L., Bashford, D. & Case, D. A. Density functional/Poisson–Boltzmann calculations of redox potentials for iron–sulfur clusters. J. Am. Chem. Soc. 116, 11898–11914 (1994).

    CAS  Google Scholar 

  24. Shoji, M. et al. Theory of chemical bonds in metalloenzymes III: full geometry optimization and vibration analysis of ferredoxin-type [2Fe–2S] cluster. Int. J. Quantum Chem. 107, 116–133 (2007).

    CAS  Google Scholar 

  25. Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. J. Chem. Phys. 74, 5737–5743 (1981).

    CAS  Google Scholar 

  26. Yamaguchi, K., Fueno, T., Ueyama, N., Akira, N. & Masaaki, O. Antiferromagnetic spin couplings between iron ions in ironsulfur clusters. a localized picture by the spin vector model. Chem. Phys. Lett. 164, 210–216 (1989).

    CAS  Google Scholar 

  27. Yamaguchi, K., Fueno, T., Ozaki, M., Ueyama, N. & Nakamura, A. A general spin-orbital (GSO) description of antiferromagnetic spin couplings between four irons in iron–sulfur clusters. Chem. Phys. Lett. 168, 56–62 (1990).

    CAS  Google Scholar 

  28. Neese, F. Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord. Chem. Rev. 253, 526–563 (2009).

    CAS  Google Scholar 

  29. Miralles, J., Daudey, J-P. & Caballol, R. Variational calculation of small energy differences. The singlet–triplet gap in [Cu2Cl6]2 . Chem. Phys. Lett. 198, 555–562 (1992).

    CAS  Google Scholar 

  30. Miralles, J., Castell, O., Caballol, R. & Malrieu, J-P. Specific CI calculation of energy differences: transition energies and bond energies. Chem. Phys. 172, 33–43 (1993).

    CAS  Google Scholar 

  31. Castell, O. & Caballol, R. Ab-initio configuration interaction calculation of the exchange coupling constant in hydroxo doubly bridged Cr(III) dimers. Inorg. Chem. 38, 668–673 (1999).

    CAS  Google Scholar 

  32. Cabrero, J., Ben Amor, N., de Graaf, C., Illas, F. & Caballol, R. Ab-initio study of the exchange coupling in oxalato-bridged Cu(II) dinuclear complexes. J. Phys. Chem. A 104, 9983–9989 (2000).

    CAS  Google Scholar 

  33. Hübner, O. & Sauer, J. The electronic states of Fe2S2−/0/+/2+. J. Chem. Phys. 116, 617–628 (2002).

    Google Scholar 

  34. Hastings, M. B. Entropy and entanglement in quantum ground states. Phys. Rev. B 76, 35114 (2007).

    Google Scholar 

  35. Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008).

    Google Scholar 

  36. White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992).

    CAS  PubMed  Google Scholar 

  37. White, S. R. & Martin, R. L. Ab initio quantum chemistry using the density matrix renormalization group. J. Chem. Phys. 110, 4127–4130 (1999).

    CAS  Google Scholar 

  38. Chan, G. K-L. & Sharma, S. The density matrix renormalization group in quantum chemistry. Annu. Rev. Phys. Chem. 62, 465–481 (2011).

    CAS  PubMed  Google Scholar 

  39. Kurashige, Y., Chan, G. K-L. & Yanai, T. Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II. Nature Chem. 5, 660–666 (2013).

    CAS  Google Scholar 

  40. Sharma, S. & Chan, G. K-L. Spin-adapted density matrix renormalization group algorithms for quantum chemistry. J. Chem. Phys. 136, 124121 (2012).

    PubMed  Google Scholar 

  41. Chan, G. K. L. & Head-Gordon, M. Highly correlated calculations with a polynomial cost algorithm: a study of the density matrix renormalization group. J. Chem. Phys. 116, 4462–4476 (2002).

    CAS  Google Scholar 

  42. Zgid, D. & Nooijen, M. On the spin and symmetry adaptation of the density matrix renormalization group method. J. Chem. Phys. 128, 014107 (2008).

    PubMed  Google Scholar 

  43. Moritz, G., Hess, B. A. & Reiher, M. Convergence behavior of the density-matrix renormalization group algorithm for optimized orbital orderings. J. Chem. Phys. 122, 024107 (2005).

    PubMed  Google Scholar 

  44. Kurashige, Y. & Yanai, T. High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds. J. Chem. Phys. 130, 234114 (2009).

    PubMed  Google Scholar 

  45. Legeza, Ö., Röder, J. & Hess, B. A. QC-DMRG study of the ionic-neutral curve crossing of LiF. Mol. Phys. 101, 2019–2028 (2003).

    CAS  Google Scholar 

  46. Marti, K. H., Ondik, I. M., Mortise, G. & Reiher, M. Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters. J. Chem. Phys. 128, 014104 (2008).

    PubMed  Google Scholar 

  47. Mayerle, J. J., Denmark, S. E., DePamphilis, B. V., Ibers, J. A. & Holm, R. H. Synthetic analogs of the active sites of iron–sulfur proteins. XI. Synthesis and properties of complexes containing the iron sulfide Fe2S2 core and the structures of bis[o-xylyl-α,α′-dithiolato-μ-sulfido-ferrate(III)] and bis[p-tolylthiolato-μ-sulfido-ferrate(III)] dianions. J. Am. Chem. Soc. 97, 1032–1045 (1975).

    CAS  Google Scholar 

  48. Orme-Johnson, W. H. Iron–sulfur proteins: structure and function. Annu. Rev. Biochem. 42, 159–204 (1973).

    CAS  PubMed  Google Scholar 

  49. Venkateswara Rao, P. & Holm, R. H. Synthetic analogues of the active sites of iron sulfur proteins. Chem. Rev. 104, 527–560 (2003).

    Google Scholar 

  50. Noodleman, L., Case, D., Mouesca, J-M. & Lamotte, B. Valence electron delocalization in polynuclear iron–sulfur clusters. J. Biol. Inorg. Chem. 1, 177–182 (1996).

    CAS  Google Scholar 

  51. Gillum, W. O., Frankel, R. B., Foner, S. & Holm, R. H. Synthetic analogues of the active sites of iron–sulfur proteins. XIII. Further electronic structural relationships between the analogues [Fe2S2(SR)4]2− and the active sites of oxidized 2Fe–2S* proteins. Inorg. Chem. 15, 1095–1100 (1976).

    CAS  Google Scholar 

  52. Noodleman, L. & Case, D. A. Density-functional theory of spin polarization and spin coupling in iron–sulfur clusters. Adv. Inorg. Chem 38, 423–470 (1992).

    CAS  Google Scholar 

  53. Averill, B. A., Herskovitz, T., Holm, R. H. & Ibers, J. A. Synthetic analogs of the active sites of iron–sulfur proteins. II. Synthesis and structure of the tetra[mercapto-μ3-sulfido-iron] clusters, [Fe4S4(SR)4]2–. J. Am. Chem. Soc. 95, 3523–3534 (1973).

    CAS  PubMed  Google Scholar 

  54. Noodleman, L., Lovell, T., Liu, T., Himo, F. & Torres, R. A. Insights into properties and energetics of iron–sulfur proteins from simple clusters to nitrogenase. Curr. Opin. Chem. Biol. 6, 259–273 (2002).

    CAS  PubMed  Google Scholar 

  55. Shaik, S., Kumar, D., de Visser, S. P., Altun, A. & Thiel, W. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem. Rev. 105, 2279–2328 (2005).

    CAS  PubMed  Google Scholar 

  56. Wodtke, A. M., Tully, J. C. & Auerbach, D. J. Electronically non-adiabatic interactions of molecules at metal surfaces: can we trust the Born–Oppenheimer approximation for surface chemistry? Int. Rev. Phys. Chem. 23, 513–539 (2004).

    CAS  Google Scholar 

  57. Lancaster, K. M. et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron–molybdenum cofactor. Science 334, 974–977 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Spatzal, T. et al. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work performed by S.S. and G.K.C. was supported by the US National Science Foundation (CHE-1265277) using software developed with the support of OCI-1265278. F.N. and K.S. acknowledge financial support from the Max Planck Society, the University of Bonn and the SFB 813 ‘Chemistry at Spin Centers’.

Author information

Authors and Affiliations

Authors

Contributions

S.S. performed the DMRG calculations, analysed the results and contributed to writing the manuscript. F.N. contributed to writing the manuscript. K.S. performed geometry optimization for the [4Fe–4S] model cluster. G.K.C. wrote the manuscript and contributed to the calculations and analysis of the results. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Garnet Kin-Lic Chan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Sivalingam, K., Neese, F. et al. Low-energy spectrum of iron–sulfur clusters directly from many-particle quantum mechanics. Nature Chem 6, 927–933 (2014). https://doi.org/10.1038/nchem.2041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2041

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing