Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The aromatic ene reaction

Abstract

The ene reaction is a pericyclic process in which an alkene with an allylic hydrogen atom (the ene donor) reacts with a second unsaturated species (the enophile) to form a new product with a transposed π-bond. The aromatic ene reaction, in which the alkene component is embedded in an aromatic ring, has only been reported in a few (four) instances and has proceeded in low yield (≤6%). Here, we show efficient aromatic ene reactions in which a thermally generated aryne intermediate engages a pendant m-alkylarene substituent to produce a dearomatized isotoluene, itself another versatile but rare reactive intermediate. Our experiments were guided by computational studies that revealed structural features conducive to the aromatic ene process. We proceeded to identify a cascade comprising three reactions: (1) hexadehydro-Diels–Alder (for aryne generation), (2) intramolecular aromatic ene and (3) bimolecular Alder ene. The power of this cascade is evident from the structural complexity of the final products, the considerable scope, and the overall efficiency of these multistage, reagent- and by-product-free, single-pot transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural delineation and previous example of an aromatic ene reaction.
Figure 2: Arynes as enophiles reacting with various types of ene donor.
Figure 3: Competition between aromatic ene and aromatic Diels–Alder pathways.
Figure 4: Studies giving insight into the importance of reaction conditions and the mechanism of the HDDA//aromatic ene reactions.

Similar content being viewed by others

References

  1. Alder, K., Pascher, F. & Schmitz, A. Über die Anlagerung von Maleinsäure-anhydrid und Azodicarbonsäure-ester an einfach ungesättigte Koh an einfach ungesättigte Kohlenwasserstoffe. Zur Kenntnis von Substitutionsvorgängen in der Allyl-Stellung. Ber. Dtsch Chem. Ges. 76, 27 (1943).

    Article  Google Scholar 

  2. Hoffman, H. M. R. The ene reaction. Angew. Chem. Int. Ed. 8, 556–577 (1969).

    Article  Google Scholar 

  3. Brinkley, Y. J. & Friedman, L. Novel ene and insertion reactions of benzyne and alkylbenzenes. Tetrahedron Lett. 13, 4141–4142 (1972).

    Article  Google Scholar 

  4. Tabushi, I., Yamada, H., Yoshida, Z. & Oda, R. Reactions of benzyne with substituted benzenes. Bull. Chem. Soc. Jpn. 50, 285–290 (1977).

    Article  CAS  Google Scholar 

  5. Hoffmann, R. W. Dehydrobenzene and Cycloalkynes Vol. 118 (Organic Chemistry, A Series of Monographs, Academic, 1967).

    Google Scholar 

  6. Candito, D. A., Panteleev, J. & Lautens, M. Intramolecular aryne–ene reaction: synthetic and mechanistic studies. J. Am. Chem. Soc. 133, 14200–14203 (2011).

    Article  CAS  Google Scholar 

  7. Candito, D. A., Dobrovolsky, D. & Lautens, M. Development of an intramolecular aryne ene reaction and application to the formal synthesis of (±)-crinine. J. Am. Chem. Soc. 134, 15572–15580 (2012).

    Article  CAS  Google Scholar 

  8. Hoye, T. R., Baire, B., Niu, D., Willoughby, P. H. & Woods, B. P. The hexadehydro-Diels–Alder reaction. Nature 490, 208–212 (2012).

    Article  CAS  Google Scholar 

  9. Himeshima, Y., Sonoda, T. & Kobayashi, H. Fluoride-induced 1,2-elimination of o-trimethylsilylphenyl triflate to benzyne under mild conditions. Chem. Lett. 12, 1211–1214 (1983).

    Article  Google Scholar 

  10. Jayanth, T. T., Jeganmohan, M., Cheng, M., Chu, S. & Cheng, C. Ene reaction of arynes with alkynes. J. Am. Chem. Soc. 128, 2232–2233 (2006).

    Article  CAS  Google Scholar 

  11. Karmakar, R., Mamidipalli, P., Yun, S. Y. & Lee, D. Alder–ene reactions of arynes. Org. Lett. 15, 1938–1941 (2013).

    Article  CAS  Google Scholar 

  12. Truong, T. & Daugulis, O. Divergent reaction pathways for phenol arylation by arynes: synthesis of helicenes and 2-arylphenols. Chem. Sci. 4, 531–535 (2013).

    Article  CAS  Google Scholar 

  13. Pirali, T., Zhang, F., Miller, A. H., Head, J. L., McAusland, D. & Greaney, M. F. Transition-metal-free direct arylation of anilines. Angew. Chem. Int. Ed. 51, 1006–1009 (2012).

    Article  CAS  Google Scholar 

  14. Baire, B., Niu, D., Willoughby, P. H., Woods, B. P. & Hoye, T. R. Synthesis of complex benzenoids via the intermediate generation of o-benzynes through the hexadehydro-Diels–Alder reaction. Nature Protoc. 8, 501–508 (2013).

    Article  CAS  Google Scholar 

  15. Yun, S. Y., Wang, K-P., Lee, N-K., Mamidipalli, P. & Lee, D. Alkane C–H activation by aryne intermediates with a silver catalyst. J. Am. Chem. Soc. 135, 4668–4671 (2013).

    Article  CAS  Google Scholar 

  16. Wang, K-P., Yun, S. Y., Mamidipalli, P. & Lee, D. Unified approaches for fluorination, trifluoromethylation, and trifluoromethylthiolation of arynes. Chem. Sci. 4, 3205–3211 (2013).

    Article  CAS  Google Scholar 

  17. Niu, D., Willoughby, P. H., Baire, B., Woods, B. P. & Hoye, T. R. Alkane desaturation via concerted double hydrogen atom transfer to benzyne. Nature 501, 531–534 (2013).

    Article  CAS  Google Scholar 

  18. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  19. Ajaz, A. et al. Concerted vs. stepwise mechanisms in dehydro-Diels-Alder reactions. J. Org. Chem. 76, 9320–9328 (2011).

    Article  CAS  Google Scholar 

  20. Jiao, H., Schleyer, P. V. R., Warmuth, R., Houk, K. N. & Beno, B. R. Theoretical studies of the structure, aromaticity, and magnetic properties of o-benzyne. Angew. Chem. Int. Ed. 36, 2761–2764 (1997).

    Article  CAS  Google Scholar 

  21. Rey, M., Huber, U. A. & Dreiding, A. S. Formation of homofulvenes. Tetrahedron Lett. 32, 3583–3588 (1968).

    Article  Google Scholar 

  22. Kopecky, K. R. & Lau, M. Thermal reaction between 5-methylene-1,3-cyclohexadiene and styrene. J. Org. Chem. 43, 525–526 (1978).

    Article  CAS  Google Scholar 

  23. Chiang, Y., Kresge, A. J., Santaballa, J. A. & Wirz, J. Ketonization of acetophenone enol in aqueous buffer solutions. Rate–equilibrium relations and mechanism of the ‘uncatalyzed’ reaction. J. Am. Chem. Soc. 110, 5506–5510 (1988).

    Article  CAS  Google Scholar 

  24. Alder, V. K. & Schmitz-Josten, R. Über die Addition von Maleinsäure–anhydrid an Styrol. Liebigs Ann. Chem. 595, 1–37 (1955).

    Article  CAS  Google Scholar 

  25. Kitamura, T. Synthetic methods for the generation and preparative application of benzyne. Aust. J. Chem. 63, 987–1001 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.N. was partially supported by a University of Minnesota Graduate School Doctoral Dissertation Fellowship. Financial support was provided by the National Institutes of Health (CA76497 and GM65597).

Author information

Authors and Affiliations

Authors

Contributions

D.N and T.R.H. designed the experiments, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Thomas R. Hoye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5841 kb)

Supplementary information

Crystallographic data for compound 42i (CIF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, D., Hoye, T. The aromatic ene reaction. Nature Chem 6, 34–40 (2014). https://doi.org/10.1038/nchem.1797

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing