Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways

A Corrigendum to this article was published on 20 August 2015

This article has been updated

Abstract

Simulations can provide tremendous insight into the atomistic details of biological mechanisms, but micro- to millisecond timescales are historically only accessible on dedicated supercomputers. We demonstrate that cloud computing is a viable alternative that brings long-timescale processes within reach of a broader community. We used Google's Exacycle cloud-computing platform to simulate two milliseconds of dynamics of a major drug target, the G-protein-coupled receptor β2AR. Markov state models aggregate independent simulations into a single statistical model that is validated by previous computational and experimental results. Moreover, our models provide an atomistic description of the activation of a G-protein-coupled receptor and reveal multiple activation pathways. Agonists and inverse agonists interact differentially with these pathways, with profound implications for drug design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MSM activation trajectories on the submillisecond timescale.
Figure 2: MSMs and high-flux activation pathways for agonist and inverse agonist bound simulations.
Figure 3: Structural details of the activation pathways.
Figure 4: Examples of GPCR ligand chemotypes enriched at MSM states along activation pathways.

Similar content being viewed by others

Change history

  • 24 July 2015

    In the version of this Article originally published, Figure 4 displayed incorrectly drawn chemical structures for five of the ligands. The correct structures were, however, used in the calculations. The hemiaminal group previously depicted in compounds 24 should have been a β-amino alcohol, compound 7 contained an extra benzylic carbon and compound 8 had an extra ring. The corresponding PubChem CID numbers for the correct ligands are as follows. Agonists: 1, 19044758; 2, 44216210; 3, 44209282; 4, 44213610. Antagonists: 5, 15020513; 6, 19823514; 7, 44209768; 8, 44209764. These drawing errors have now been corrected in the online versions of this Article. Additionally, the 'Inverse agonist' label at the top of Fig. 4b has been changed to 'Antagonist' as this was the original designation for this set of the GPCR ligand database used for docking (E. A. Gatica and C. N. Cavasotto, J. Chem. Inf. Model. 52, 1–6; 2012). Some ligands, particularly carazolol used in this study, may have inverse agonist activity. For all calculations, functional groups were protonated according to pH = 7. Stereochemistry is not depicted in the figure because stereoisomer activity for these compounds has not been elucidated. The structures in Figure 4 are each representative of many ligands that define a 3D chemotype and share a similar binding pose in protein conformations with similar progress scores. Stereoisomers were enumerated for up to four chiral centers and docked. The isomer with the highest score, or approximated binding affinity, was selected for a given protein conformation. Different protein conformations score isomers differently, and protein conformations with the same progress score may select different isomers of the same compound. Further experiments on the known agonist and antagonist ligands would be needed in order to determine the activities of stereoisomers, as has been done for albuterol and fenoterol (R. Seifert and S. Dove, Mol. Pharmacol. 75,13–18; 2009).

References

  1. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rasmussen, S. G. F. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rasmussen, S. G. F. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dror, R. O. et al. Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations. Proc. Natl Acad. Sci. USA 106, 4689–4694 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dror, R. O. et al. Activation mechanism of the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 108, 18684–18689 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vanni, S., Neri, M., Tavernelli, I. & Rothlisberger, U. Predicting novel binding modes of agonists to β adrenergic receptors using all-atom molecular dynamics simulations. PLoS Comput. Biol. 7, e1001053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ivetac, A. & McCammon, J. A. Mapping the druggable allosteric space of G-protein coupled receptors: a fragment-based molecular dynamics approach. Chem. Biol. Drug Des. 76, 201–217 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shaw, D. E. et al. Anton, a special-purpose machine for molecular dynamics simulation. Commun. ACM 51, 91–97 (2008).

    Article  Google Scholar 

  10. Shirts, M. & Pande, V. S. Screen savers of the world unite! Science 290, 1903–1904 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Hellerstein, J. L., Kohlhoff, K. J. & Konerding, D. E. Science in the cloud: accelerating discovery in the 21st century. IEEE Internet Comput. 16, 64–68 (2012).

    Article  Google Scholar 

  12. Bowman, G. R., Huang, X. & Pande, V. S. Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 49, 197–201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Senne, M., Trendelkamp-Schroer, B., Mey, A. S. J. S., Schütte, C. & Noé, F. EMMA: a software package for Markov model building and analysis. J. Chem. Theory Comput. 8, 2223–2238 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Noé, F. & Fischer, S. Transition networks for modeling the kinetics of conformational change in macromolecules. Curr. Opin Struct. Biol. 18, 154–162 (2008).

    Article  PubMed  Google Scholar 

  15. Bowman, G. R. & Geissler, P. L. Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc. Natl Acad. Sci. USA 109, 11681–11686 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vanden-Eijnden, W. E, E. Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 61, 391–420 (2010).

    Article  PubMed  Google Scholar 

  17. Metzner, P., Schütte, C. & Vanden-Eijnden, E. Transition path theory for Markov jump processes. Mult. Mod. Sim. 7, 1192–1219 (2009).

    Article  CAS  Google Scholar 

  18. Noé, F., Schütte, C., Vanden-Eijnden, E., Reich, L. & Weikl, T. R. Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc. Natl Acad. Sci. USA 106, 19011–19016 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kofuku, Y. et al. Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nature Commun. 3, 1045 (2012).

    Article  Google Scholar 

  20. Strader, C. D. et al. Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. J. Biol. Chem. 263, 10267–10271 (1988).

    CAS  PubMed  Google Scholar 

  21. Liapakis, G. et al. The forgotten serine: a critical role for Ser-2035.42 in ligand binding to and activation of the β2 adrenergic receptor. J. Biol. Chem. 275, 37779–37788 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Gatica, E. A. & Cavasotto, C. N. Ligand and decoy sets for docking to G protein-coupled receptors. J. Chem. Inf. Model 52, 1–6 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Jain, A. N. Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J. Comput. Aided Mol. Des. 21, 281–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Spitzer, R. & Jain, A. N. Surflex-Dock: docking benchmarks and real-world application. J Comput. Aided Mol. Des. 26, 687–699 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shoichet, B. K. Virtual screening of chemical libraries. Nature 432, 862–865 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lane, T. J., Shukla, D., Beauchamp, K. A. & Pande, V. S. To milliseconds and beyond: challenges in the simulation of protein folding. Curr. Opin. Struct. Biol. 23, 58–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Shoichet, B. K. & Kobilka, B. K. Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol. Sci. 33, 268–272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schames, J. R. et al. Discovery of a novel binding trench in HIV integrase. J. Med. Chem. 47, 1879–1881 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Lomize, M. A., Lomize, A. L., Pogozheva, I. D. & Mosberg, H. I. OPM: orientations of proteins in membranes database. Bioinformatics 22, 623–625 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Rosenbaum, D. M. et al. Structure and function of an irreversible agonist–β2 adrenoceptor complex. Nature 469, 236–240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hildebrand, P. W. et al. SuperLooper – a prediction server for the modeling of loops in globular and membrane proteins. Nucleic Acids Res. 37, W571–W574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ballesteros, J. A. et al. Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 276, 29171–29177 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Ghanouni, P. et al. The effect of pH on β2 adrenoceptor function: evidence for protonation-dependent activation. J. Biol. Chem. 275, 3121–3127 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Voelz, V. A., Bowman, G. R., Beauchamp, K. A. & Pande, V. S. Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1−39). J. Am. Chem. Soc. 132, 1526–1528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beauchamp, K. A. et al. MSMBuilder2: modeling conformational dynamics on the picosecond to millisecond scale. J. Chem. Theory Comput. 7, 3412–3419 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S. & Coleman, R. G. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52, 1757–1768 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hawkins, P. C. D., Skillman, A. G., Warren, G. L., Ellingson, B. A. & Stahl, M. T. Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 50, 572–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. ROCS, version 3.1.2 (OpenEye Scientific Software, Santa Fe, New Mexico, 2011).

  40. Chambers, C. et al. in Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design and Implementation 363–375 (ACM, 2010).

    Book  Google Scholar 

  41. Dean, J. & Ghemawat, S. MapReduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008).

    Article  Google Scholar 

  42. Chang, F. et al. Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. 26, 4:1–4:26 (2008).

    Article  Google Scholar 

  43. Melnik, S. et al. Dremel: interactive analysis of web-scale datasets. Proc. VLDB Endow. 3, 330–339 (2010).

    Article  Google Scholar 

  44. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Berezhkovskii, A., Hummer, G. & Szabo, A. Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys. 130, 205102 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Stumpe for his contributions to setting up the initial molecular systems and P. Kasson and J. Hellerstein for helpful advice and support. This work was funded in part by a 450M CPU core-hour donation by Google Inc. through the Exacycle eScience program, the Simbios NIH National Center on Biocomputing through the NIH Roadmap for Medical Research Grant U54 GM07297 and a Stanford School of Medicine Dean's Fellowship (K.J.K.). We also thank the users of the Folding@home distributed-computing project for donating compute time for some preliminary simulations that ensured a stable production run. Additional computations for docking and chemotype clustering were performed on the Blue Waters supercomputer at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Contributions

K.J.K., D.S. and M.L. contributed equally to this work. V.S.P., R.B.A, D.E.K. and D.B. conceived, and V.S.P. and R.B.A. supervised the project. K.J.K. and D.E.K. developed the platform for running MD simulations with Gromacs on Google Exacycle. K.J.K. set up the simulation systems. G.R.B helped with initial analysis. K.J.K. performed simulations on Google Exacycle and processed data on Google's production infrastructure. K.J.K. and G.R.B. performed preliminary simulations on Folding@home. D.S. and M.L. performed additional simulations. D.S., M.L and K.J.K. analysed the data and built MSMs. M.L. performed small-molecule docking calculations. D.S., M.L. and K.J.K. co-wrote the manuscript with inputs from G.R.B, R.B.A and V.S.P. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Kai J. Kohlhoff, Russ B. Altman or Vijay S. Pande.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4482 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohlhoff, K., Shukla, D., Lawrenz, M. et al. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nature Chem 6, 15–21 (2014). https://doi.org/10.1038/nchem.1821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing