Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On the cooperative formation of non-hydrogen-bonded water at molecular hydrophobic interfaces

Abstract

The unique structural, dynamical and chemical properties of air/water and oil/water interfaces are thought to play a key role in various biological, geological and environmental processes. For example, non-hydrogen-bonded (‘dangling’) OH groups—which create surface defects in water's hydrogen bonding network and are experimentally detected at both macroscopic (air/water or oil/water) and microscopic (dissolved hydrophobic molecule) interfaces—are thought to catalyse some chemical reactions. However, how the size, curvature or charge of the exposed hydrophobic surface influences water's propensity to form dangling OH defects has not yet been established quantitatively. Here we use Raman multivariate curve resolution to probe spectroscopically the hydrophobic hydration shell and, using a statistical multisite analysis, we show that such interfacial dangling OH structures are entropically stabilized and their formation is cooperative (the probability that a non-hydrogen-bonded OH group will form depends nonlinearly on the hydrophobic surface area). We thus expose an important difference between the chemical properties of molecular and macroscopic oil/water interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hydration-shell spectra of propanol in water.
Figure 2: Probability and Gibbs energy of dangling OH defect formation.
Figure 3: Temperature dependence of dangling OH Gibbs energies.
Figure 4: Thermodynamics of dangling OH defect formation.

Similar content being viewed by others

References

  1. Chandler, D. Physical chemistry – oil on troubled waters. Nature 445, 831–832 (2007).

    CAS  PubMed  Google Scholar 

  2. Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008).

    CAS  PubMed  Google Scholar 

  3. Patel, A. J. et al. Sitting at the edge: how biomolecules use hydrophobicity to tune their interactions and function. J. Phys. Chem. B 116, 2498–2503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Du, Q., Freysz, E. & Shen, Y. R. Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264, 826–828 (1994).

    CAS  PubMed  Google Scholar 

  5. Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    CAS  PubMed  Google Scholar 

  6. Ji, N., Ostroverkhov, V., Tian, C. S. & Shen, Y. R. Characterization of vibrational resonances of water–vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys. Rev. Lett. 100, 096102 (2008).

    CAS  PubMed  Google Scholar 

  7. Levering, L. M., Sierra-Hernandez, M. R. & Allen, H. C. Observation of hydronium ions at the air–aqueous acid interface: vibrational spectroscopic studies of aqueous HCl, HBr, and HI. J. Phys. Chem. C 111, 8814–8826 (2007).

    CAS  Google Scholar 

  8. Moore, F. G. & Richmond, G. L. Integration or segregation: how do molecules behave at oil/water interfaces? Acc. Chem. Res. 41, 739–748 (2008).

    CAS  PubMed  Google Scholar 

  9. Jung, Y. & Marcus, R. A. On the theory of organic catalysis on water. J. Am. Chem. Soc. 129, 5492–5502 (2007).

    CAS  PubMed  Google Scholar 

  10. Jung, Y. S. & Marcus, R. A. Protruding interfacial OH groups and ‘on-water' heterogeneous catalysis. J. Phys. Condens. Matter 22, 284117 (2010).

    PubMed  Google Scholar 

  11. Chanda, A. & Fokin, V. V. Organic synthesis ‘on water'. Chem. Rev. 109, 725–748 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Butler, R. N. & Coyne, A. G. Water: nature's reaction enforcer – comparative effects for organic synthesis ‘in-water’ and ‘on-water’. Chem. Rev. 110, 6302–6337 (2010).

    CAS  PubMed  Google Scholar 

  13. Perera, P. N. et al. Observation of water dangling OH bonds around dissolved nonpolar groups. Proc. Natl Acad. Sci. USA 106, 12230–12234 (2009).

    CAS  PubMed  Google Scholar 

  14. Davis, J. G., Gierszal, K. P., Wang, P. & Ben-Amotz, D. Water structural transformation at molecular hydrophobic interfaces. Nature 491, 582–585 (2012).

    CAS  PubMed  Google Scholar 

  15. Tomlinson-Phillips, J. et al. Structure and dynamics of water dangling OH bonds in hydrophobic hydration shells. Comparison of simulation and experiment. J. Phys. Chem. A 115, 6177–6183 (2011).

    CAS  PubMed  Google Scholar 

  16. Eaves, J. D. et al. Hydrogen bonds in liquid water are broken only fleetingly. Proc. Natl Acad. Sci. USA 102, 13019–13022 (2005).

    CAS  PubMed  Google Scholar 

  17. Laage, D. & Hynes, J. T. A molecular jump mechanism of water reorientation. Science 311, 832–835 (2006).

    CAS  PubMed  Google Scholar 

  18. Laage, D., Stirnemann, G. & Hynes, J. T. Why water reorientation slows without iceberg formation around hydrophobic solutes. J. Phys. Chem. B 113, 2428–2435 (2009).

    CAS  PubMed  Google Scholar 

  19. Zheng, Y. Y. & Zhang, J. P. Catalysis in the oil droplet/water interface for aromatic Claisen rearrangement. J. Phys. Chem. A 114, 4325–4333 (2010).

    CAS  PubMed  Google Scholar 

  20. Freier, E., Wolf, S. & Gerwert, K. Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc. Natl Acad. Sci. USA 108, 11435–11439 (2011).

    CAS  PubMed  Google Scholar 

  21. Furutani, Y. et al. Dynamics of dangling bonds of water molecules in pharaonis halorhodopsin during chloride ion transportation. J. Phys. Chem. Lett. 3, 2964–2969 (2012).

    CAS  PubMed  Google Scholar 

  22. Rankin, B. M. et al. Interactions between halide anions and a molecular hydrophobic interface. Faraday Discuss. 160, 255–270 (2013).

    CAS  PubMed  Google Scholar 

  23. Perera, P., Wyche, M., Loethen, Y. & Ben-Amotz, D. Solute-induced perturbations of solvent-shell molecules observed using multivariate Raman curve resolution. J. Am. Chem. Soc. 130, 4576–4579 (2008).

    CAS  PubMed  Google Scholar 

  24. Perera, P. N., Browder, B. & Ben-Amotz, D. Perturbations of water by alkali halide ions measured using multivariate Raman curve resolution. J. Phys. Chem. B 113, 1805–1809 (2009).

    CAS  PubMed  Google Scholar 

  25. Gierszal, K. P. et al. π-Hydrogen bonding in liquid water. J. Phys. Chem. Lett. 2, 2930–2933 (2011).

    CAS  Google Scholar 

  26. Fega, K. R., Wilcox, D. S. & Ben-Amotz, D. Application of Raman multivariate curve resolution to solvation-shell spectroscopy. Appl. Spectrosc. 66, 282–288 (2012).

    CAS  PubMed  Google Scholar 

  27. Lum, K., Chandler, D. & Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999).

    CAS  Google Scholar 

  28. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    CAS  PubMed  Google Scholar 

  29. Lawton, W. H. & Sylvestre, E. A. Self modeling curve resolution. Technometrics 13, 617–633 (1971).

    Google Scholar 

  30. Huang, N. D. et al. Microscopic probing of the size dependence in hydrophobic solvation. J. Chem. Phys. 136, 074507 (2012).

    PubMed  Google Scholar 

  31. Slipchenko, L. V. & Gordon, M. S. Water–benzene interactions: an effective fragment potential and correlated quantum chemistry study. J. Phys. Chem. A 113, 2092–2102 (2009).

    CAS  PubMed  Google Scholar 

  32. Rosenfeld, D. E., Kwak, K., Gengeliczki, Z. & Fayer, M. D. Hydrogen bond migration between molecular sites observed with ultrafast 2D IR chemical exchange spectroscopy. J. Phys. Chem. B 114, 2383–2389 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rosenfeld, D. E., Gengeliczki, Z. & Fayer, M. D. Solvent control of the soft angular potential in hydroxyl–π hydrogen bonds: inertial orientational dynamics. J. Phys. Chem. B 113, 13300–13307 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, I. T. S. & Walker, G. C. Signature of hydrophobic hydration in a single polymer. Proc. Natl Acad. Sci. USA 108, 16527–16532 (2011).

    CAS  PubMed  Google Scholar 

  35. Nelson, N., Walder, R. & Schwartz, D. K. Single molecule dynamics on hydrophobic self-assembled monolayers. Langmuir 28, 12108–12113 (2012).

    CAS  PubMed  Google Scholar 

  36. Collins, M. D., Hummer, G., Quillin, M. L., Matthews, B. W. & Gruner, S. M. Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. Proc. Natl Acad. Sci. USA 102, 16668–16671 (2005).

    CAS  PubMed  Google Scholar 

  37. Kuna, J. J. et al. The effect of nanometre-scale structure on interfacial energy. Nature Mater. 8, 837–842 (2009).

    CAS  Google Scholar 

  38. Luzar, A. & Leung, K. Dynamics of capillary evaporation. I. Effect of morphology of hydrophobic surfaces. J. Chem. Phys. 113, 5836–5844 (2000).

    CAS  Google Scholar 

  39. Giovambattista, N., Debenedetti, P. G. & Rossky, P. J. Hydration behavior under confinement by nanoscale surfaces with patterned hydrophobicity and hydrophilicity. J. Phys. Chem. C 111, 1323–1332 (2007).

    CAS  Google Scholar 

  40. Acharya, H., Vembanur, S., Jamadagni, S. N. & Garde, S. Mapping hydrophobicity at the nanoscale: applications to heterogeneous surfaces and proteins. Faraday Discuss. 146, 1–13 (2010).

    Google Scholar 

  41. Jamadagni, S. N., Godawat, R. & Garde, S. in Annual Review of Chemical and Biomolecular Engineering Vol. 2 (ed. J. M. Prausnitz) 147–171 (Annual Reviews, 2011).

    Google Scholar 

  42. Jana, B., Pal, S. & Bagchi, B. Enhanced tetrahedral ordering of water molecules in minor grooves of DNA: relative role of DNA rigidity, nanoconfinement, and surface specific interactions. J. Phys. Chem. B 114, 3633–3638 (2010).

    CAS  PubMed  Google Scholar 

  43. Hummer, G. Molecular binding under water's influence. Nature Chem. 2, 906–907 (2010).

    CAS  Google Scholar 

  44. Setny, P., Baron, R. & McCammon, J. A. How can hydrophobic association be enthalpy driven? J. Chem. Theory Comput. 6, 2866–2871 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Baron, R., Setny, P. & McCammon, J. A. Water in cavity-ligand recognition. J. Am. Chem. Soc. 132, 12091–12097 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Abel, R., Young, T., Farid, R., Berne, B. J. & Friesner, R. A. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J. Am. Chem. Soc. 130, 2817–2831 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Corcelli, S. A. & Skinner, J. L. Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90 °C. J. Phys. Chem. A 109, 6154–6165 (2005).

    CAS  PubMed  Google Scholar 

  48. Abe, N. & Ito, M. Effects of hydrogen-bonding on the Raman intensities of methanol, ethanol and water. J. Raman Spectrosc. 7, 161–167 (1978).

    CAS  Google Scholar 

  49. Wu, D. Y. et al. Theoretical study of binding interactions and vibrational Raman spectra of water in hydrogen-bonded anionic complexes: (H2O)n (n = 2 and 3), H2O···X (X=F, Cl, Br and I), and H2O···M (M=Cu, Ag, and Au). J. Phys. Chem. A 112, 1313–1321 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CHE-1213338). The authors thank Lyudmila Slipchenko for sharing the results of her QM-MM dimer calculations, as well as Jieke Chen for his assistance in collecting experimental results in this work.

Author information

Authors and Affiliations

Authors

Contributions

J.G.D., B.M.R. and K.P.G performed the experimental measurement, J.G.D. and B.M.R. contributed to the analysis of the experimental results, J.G.D. wrote the first draft of the manuscript and D.B-A. conceived the experimental and statistical analysis strategy, and wrote the final draft of the manuscript.

Corresponding author

Correspondence to Dor Ben-Amotz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 332 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, J., Rankin, B., Gierszal, K. et al. On the cooperative formation of non-hydrogen-bonded water at molecular hydrophobic interfaces. Nature Chem 5, 796–802 (2013). https://doi.org/10.1038/nchem.1716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing