Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Total synthesis of the Daphniphyllum alkaloid daphenylline

Subjects

Abstract

The Daphniphyllum alkaloids are a large class of natural products isolated from a genus of evergreen plants widely used in Chinese herbal medicine. They display a remarkable range of biological activities, including anticancer, antioxidant, and vasorelaxation properties as well as elevation of nerve growth factor. Daphenylline is a structurally unique member among the predominately aliphatic Daphniphyllum alkaloids, and contains a tetrasubstituted arene moiety mounted on a sterically compact hexacyclic scaffold. Herein, we describe the first total synthesis of daphenylline. A gold-catalysed 6-exo-dig cyclization reaction and a subsequent intramolecular Michael addition reaction, inspired by Dixon's seminal work, were exploited to construct the bridged 6,6,5-tricyclic motif of the natural product at an early stage, and the aromatic moiety was forged through a photoinduced olefin isomerization/6π-electrocyclization cascade followed by an oxidative aromatization process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected natural products that represent major subfamilies of Daphniphyllum alkaloids.
Figure 2: An inspiring synthesis of the tricyclic core of calyciphylline A-type alkaloids by Dixon and co-workers26.
Figure 3: Retrosynthetic analysis of daphenylline.
Figure 4: Construction of the bridged tricycle 9.
Figure 5: Assembly of the pentacyclic intermediate 25.
Figure 6: Completion of the total synthesis of daphenylline.

Similar content being viewed by others

References

  1. Balunas, M. J. & Kinghorn, A. D. Drug discovery from medicinal plants. Life Sci. 78, 431–441 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Keasling, J. D., Mendoza, A. & Baran, P. S. Synthesis: a constructive debate. Nature 492, 188–189 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Tarselli, M. A. et al. Synthesis of conolidine, a potent non-opioid analgesic for tonic and persistent pain. Nature Chem. 3, 449–453 (2011).

    Article  CAS  Google Scholar 

  4. Wender, P. A. et al. Gateway synthesis of daphnane congeners and their protein kinase C affinities and cell-growth activities. Nature Chem. 3, 615–619 (2011).

    Article  CAS  Google Scholar 

  5. Mendoza, A., Ishihara, Y. & Baran, P. S. Scalable enantioselective total synthesis of taxanes. Nature Chem. 4, 21–25 (2012).

    Article  CAS  Google Scholar 

  6. Editorial Committee of the Administration Bureau of Traditional Chinese Medicine in Chinese Materia Medica (Zhonghua Bencao), Vol. 4, 865–867 (Shanghai Science & Technology Press, 1999).

  7. Kobayashi, J. & Kubota, T. The Daphniphyllum alkaloids. Nat. Prod. Rep. 26, 936–962 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Piettre, S. & Heathcock, C. H. Biomimetic total synthesis of proto-daphniphylline. Science 248, 1532–1534 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Heathcock, C. H. The enchanting alkaloids of yuzuriha. Angew. Chem. Int. Ed. 31, 665–681 (1992).

    Article  Google Scholar 

  10. Kobayashi, J., Inaba, Y., Shiro, M., Yoshida, N. & Morita, H. Daphnicyclidins A–H, novel hexa- or pentacyclic alkaloids from two species of Daphniphyllum. J. Am. Chem. Soc. 123, 11402–11408 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Mu, S-Z. et al. Secophnane-type alkaloids from Daphniphyllum oldhami. Chem. Biodivers. 4, 129–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Morita, H. et al. Daphmanidins C and D, novel pentacyclic alkaloids from Daphniphyllum teijsmanii. Org. Lett. 7, 459–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Matsuno, Y. et al. Pordamacrines A and B, alkaloids from Daphniphyllum macropodum. J. Nat. Prod. 70, 1516–1518 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Ruggeri, R. B., Hansen, M. M. & Heathcock, C. H. Total synthesis of (±)-methyl homosecodaphniphyllate: a remarkable new tetracyclization reaction. J. Am. Chem. Soc. 110, 8734–8736 (1988).

    Article  CAS  Google Scholar 

  15. Heathcock, C. H., Davidsen, S. K., Mills, S. & Sanner, M. A. Total synthesis of (+)-methyl homodaphniphyllate. J. Am. Chem. Soc. 108, 5650–5651 (1986).

    Article  CAS  Google Scholar 

  16. Ruggeri, R. B. & Heathcock, C. H. Biomimetic total synthesis of (±)-methyl homodaphniphyllate. J. Org. Chem. 55, 3714–3715 (1990).

    Article  CAS  Google Scholar 

  17. Heathcock, C. H., Ruggeri, R. B. & McClure, K. F. Daphniphyllum alkaloids. 15. Total syntheses of (±)-methyl homodaphniphyllate and (±)-daphnilactone A. J. Org. Chem. 57, 2585–2594 (1992).

    Article  CAS  Google Scholar 

  18. Heathcock, C. H., Stafford, J. A. & Clark, D. L. Daphniphyllum alkaloids. 14. Total synthesis of (±)-bukittinggine. J. Org. Chem. 57, 2575–2585 (1992).

    Article  CAS  Google Scholar 

  19. Stafford, J. A. & Heathcock, C. H. Asymmetric total synthesis of (–)-secodaphniphylline. J. Org. Chem. 55, 5433–5434 (1990).

    Article  CAS  Google Scholar 

  20. Heathcock, C. H., Kath, J. C. & Ruggeri, R. B. Daphniphyllum alkaloids. 16. Total synthesis of (+)-codaphniphylline. J. Org. Chem. 60, 1120–1130 (1995).

    Article  CAS  Google Scholar 

  21. Weiss, M. E. & Carreira, E. M. Total synthesis of (+)-daphmanidin E. Angew. Chem. Int. Ed. 50, 11501–11505 (2011).

    Article  CAS  Google Scholar 

  22. Ikeda, S., Shibuya, M., Kanoh, N. & Iwabuchi, Y. Synthetic studies on daphnicyclidin A: enantiocontrolled construction of the BCD ring system. Org. Lett. 11, 1833–1836 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Dunn, T. B., Ellis, J. M., Kofink, C. C., Manning, J. R. & Overman, L. E. Asymmetric construction of rings A–D of daphnicyclidin-type alkaloids. Org. Lett. 11, 5658–5661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bélanger, G., Boudreault, J. & Lévesque, F. Synthesis of the tetracyclic core of daphnilactone B-type and yuzurimine-type alkaloids. Org. Lett. 13, 6204–6207 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Coldham, I., Watson, L., Adams, H. & Martin, N. G. Synthesis of the core ring system of the yuzurimine-type Daphniphyllum alkaloids by cascade condensation, cyclization, cycloaddition chemistry. J. Org. Chem. 76, 2360–2366 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Sladojevich, F., Michaelides, I. N., Darses, B., Ward, J. W. & Dixon, D. J. Expedient route to the functionalized calyciphylline A-type skeleton via a Michael addition–RCM strategy. Org. Lett. 13, 5132–5135 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Kourra, C., Klotter, F., Sladojevich, F. & Dixon, D. J. Alkali base-initiated Michael addition/alkyne carbocyclization cascades. Org. Lett. 14, 1016–1019 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Darses, B. et al. Expedient construction of the [7–5–5] all-carbon tricyclic core of the Daphniphyllum alkaloids daphnilongeranin B and daphniyunnine D. Org. Lett. 14, 1684–1687 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Xu, C., Wang, L., Hao, X. & Wang, D. Z. Tackling reactivity and selectivity within a strained architecture: construction of the [6−6−5−7] tetracyclic core of calyciphylline alkaloids. J. Org. Chem. 77, 6307–6313 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Li, H. et al. Rapid construction of the [6−6−6−5] tetracyclic skeleton of the Daphniphyllum alkaloid daphenylline. Chem. Asian J. 7, 2519–2522 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Fang, B. et al. Synthesis of the tetracyclic core (ABCE rings) of daphenylline. J. Org. Chem. 77, 8367–8373 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, M. et al. Tandem semipinacol-type 1,2-carbon migration/aldol reaction toward the construction of [5–6–7] all-carbon tricyclic core of calyciphylline A-type alkaloids. Org. Lett. 14, 5114–5117 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Yao, Y. & Liang, G. Rapid construction of the ABC ring system in the Daphniphyllum alkaloid daphniyunnine C. Org. Lett. 14, 5499–5501 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Q. et al. Daphenylline, a new alkaloid with an unusual skeleton, from Daphniphyllum longeracemosum. Org. Lett. 11, 2357–2359 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Bian, M. et al. Total syntheses of anominine and tubingensin A. J. Am. Chem. Soc. 134, 8078–8081 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Staben, S. T. et al. Gold(I)-catalyzed cyclizations of silyl enol ethers: application to the synthesis of (+)-lycopladine A. Angew. Chem. Int. Ed. 45, 5991–5994 (2006).

    Article  CAS  Google Scholar 

  37. Piers, E. & Oballa, R. M. Concise total syntheses of the sesquiterpenoids (−)-homalomenol A and (−)-homalomenol B. J. Org. Chem. 61, 8439–8447 (1996).

    Article  CAS  Google Scholar 

  38. Huwyler, N. & Carreira, E. M. Total synthesis and stereochemical revision of the chlorinated sesquiterpene (±)-gomerone C. Angew. Chem. Int. Ed. 51, 13066–13069 (2012).

    Article  CAS  Google Scholar 

  39. Nicolaou, K. C., Tria, G. S., Edmonds, D. J. & Kar, M. Total syntheses of (±)-platencin and (−)-platencin. J. Am. Chem. Soc. 131, 15909–15917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Phipps, R. J., Hamilton, G. L. & Toste, F. D. The progression of chiral anions from concepts to applications in asymmetric catalysis. Nature Chem. 4, 603–614 (2012).

    Article  CAS  Google Scholar 

  41. Nicolaou, K. C., Petasis, N. A., Zipkin, R. E. & Uenishi, J. The endiandric acid cascade. Electrocyclizations in organic synthesis. 1. Stepwise, stereocontrolled total synthesis of endiandric acids A and B. J. Am. Chem. Soc. 104, 5555–5557 (1982).

    Article  CAS  Google Scholar 

  42. Jung, M. E. & Duclos, B. A. Synthetic approach to analogues of betulinic acid. Tetrahedron 62, 9321–9334 (2006).

    Article  CAS  Google Scholar 

  43. Trost, B. M., Pfrengle, W., Urabe, H. & Dumas, J. Palladium-catalyzed alkylative cyclization of 1,6- and 1,7-enynes. J. Am. Chem. Soc. 114, 1923–1924 (1992).

    Article  CAS  Google Scholar 

  44. Bishop, L. M., Barbarow, J. E., Bergman, R. G. & Trauner, D. Catalysis of 6π electrocyclizations. Angew. Chem. Int. Ed. 47, 8100–8103 (2008).

    Article  CAS  Google Scholar 

  45. Beaudry, C. M., Malerich, J. P. & Trauner, D. Biosynthetic and biomimetic electrocyclizations. Chem. Rev. 105, 4757–4778 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Brückner, S., Baldwin, J. E., Moses, J., Adlington, R. M. & Cowley, A. R. Mechanistic evidence supporting the biosynthesis of photodeoxytridachione. Tetrahedron Lett. 44, 7471–7473 (2003).

    Article  CAS  Google Scholar 

  47. Jacobsen, M. F., Moses, J. E., Adlington, R. M. & Baldwin, J. E. The total synthesis of spectinabilin and its biomimetic conversion to SNF4435C and SNF4435D. Org. Lett. 7, 2473–2476 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Miller, A. K. & Trauner, D. Mining the tetraene manifold: total synthesis of complex pyrones from Placobranchus ocellatus. Angew. Chem. Int. Ed. 44, 4602–4606 (2005).

    Article  CAS  Google Scholar 

  49. Ikeda, S., Mori, N. & Sato, Y. Regioselective cyclic cotrimerization of α,β-enones and alkynes by a nickel-aluminum catalyst system. J. Am. Chem. Soc. 119, 4779–4780 (1997).

    Article  CAS  Google Scholar 

  50. Ito, Y., Hirao, T. & Saegusa, T. Synthesis of α,β-unsaturated carbonyl compounds by palladium(II)-catalyzed dehydrosilylation of silyl enol ethers. J. Org. Chem. 43, 1011–1013 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Dawei Ma for his contributions to China's natural product synthesis on the occasion of his 50th birthday. We thank X-J. Hao for providing an authentic sample of daphenylline, Z-J. Yao for assistance with the cryoprobe NMR facility and D. J. Edmonds and R. Denton for helpful discussions. Financial support was provided by the Ministry of Science & Technology (2013CB836900) and the National Natural Science Foundation of China (21290180, 21172235 and 21222202).

Author information

Authors and Affiliations

Authors

Contributions

Z.L. and Y.L. contributed equally to this work. A.L., Z.L. and Y.L. conceived the synthetic route and analysed the results. Z.L., Y.L. and J.D. conducted the experimental work. A.L. directed the project and wrote the manuscript.

Corresponding author

Correspondence to Ang Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9904 kb)

Supplementary information

Crystallographic data for compound 10. (CIF 18 kb)

Supplementary information

Crystallographic data for racemate of compound 27. (CIF 38 kb)

Supplementary information

Crystallographic data for desilylated compound 9a. (CIF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Z., Li, Y., Deng, J. et al. Total synthesis of the Daphniphyllum alkaloid daphenylline. Nature Chem 5, 679–684 (2013). https://doi.org/10.1038/nchem.1694

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1694

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing