Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron

Abstract

The reduction of gaseous nitrogen is a challenge for industrial, biological and synthetic chemists. Major goals include understanding the formation of ammonia for agriculture, and forming N–C and N–Si bonds for the synthesis of fine chemicals. The iron–molybdenum active site of the enzyme nitrogenase has inspired chemists to explore iron and molybdenum complexes in transformations related to N2 reduction. This area of research has gained significant momentum, and the past two years have witnessed a number of significant advances in synthetic Fe–N2 and Mo–N2 chemistry. Furthermore, the identities of all atoms in the iron–molybdenum cofactor of nitrogenase have finally been elucidated, and the discovery of a carbide has generated new questions and targets for coordination chemists. This Perspective summarizes the recent work on iron and molydenum complexes, and highlights the opportunities for continued research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key developments in molybdenum-N2 chemistry.
Figure 2: Recent monometallic iron-based transformations of N2 or nitride.
Figure 3: Reduction of a diiron(II) dimer gives spontaneous cleavage of the N–N bond to form a bis(nitride) product.
Figure 4: Atomic structure of the FeMoco of molybdenum-dependent nitrogenase.

Similar content being viewed by others

References

  1. Holland, P. L. in Comprehensive Coordination Chemistry II Vol. 8 (eds McCleverty, J. & Meyer, T. J.) 569–599 (Elsevier, 2004).

    Google Scholar 

  2. MacKay, B. A. & Fryzuk, M. D. Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem. Rev. 104, 385–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Hidai, M. & Mizobe, Y. Recent advances in the chemistry of dinitrogen complexes. Chem. Rev. 95, 1115–1133 (1995).

    Article  CAS  Google Scholar 

  4. Hazari, N. Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Chem. Soc. Rev. 39, 4044–4056 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Crossland, J. L. & Tyler, D. R. Iron-dinitrogen coordination chemistry: dinitrogen activation and reactivity. Coord. Chem. Rev. 254, 1883–1894 (2010).

    Article  CAS  Google Scholar 

  6. Chatt, J., Pearman, A. J. & Richards, R. L. Reduction of monocoordinated molecular nitrogen to ammonia in a protic environment. Nature 253, 39–40 (1975).

    Article  CAS  Google Scholar 

  7. Chatt, J., Pearman, A. J. & Richards, R. L. Conversion of dinitrogen in its molybdenum and tungsten complexes into ammonia and possible relevance to the nitrogenase reaction. J. Chem. Soc. Dalton Trans. 1852–1860 (1977).

  8. Denisov, N. T., Shuvalov, V. F., Shuvalova, N. I., Shilova, A. K. & Shilov, A. E. Modelling of the biological fixation of nitrogen. Catalytic reduction of nitrogen in protonic media. Dokl. Akad. Nauk SSSR 195, 879–881 (1970).

    CAS  Google Scholar 

  9. Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Shiina, K. Reductive silylation of molecular nitrogen via fixation to tris(trialkylsilyl)amine. J. Am. Chem. Soc. 94, 9266–9267 (1972).

    Article  CAS  Google Scholar 

  11. Komori, K., Oshita, H., Mizobe, Y. & Hidai, M. Catalytic conversion of molecular nitrogen into silylamines using molybdenum and tungsten dinitrogen complexes. J. Am. Chem. Soc. 111, 1939–1940 (1989).

    Article  CAS  Google Scholar 

  12. Tanaka, H. et al. Molybdenum-catalyzed transformation of molecular dinitrogen into silylamine: experimental and DFT study on the remarkable role of ferrocenyldiphosphine ligands. J. Am. Chem. Soc. 133, 3498–3506 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Arashiba, K. et al. Synthesis and protonation of molybdenum– and tungsten–dinitrogen complexes bearing PNP-type pincer ligands. Organometallics 31, 2035–2041 (2012).

    Article  CAS  Google Scholar 

  14. Baumann, J. A. et al. Formation of ammonia and hydrazine from the reactions of acids with bis(dinitrogen) complexes of molybdenum. Inorg. Chem. 24, 3568–3578 (1985).

    Article  CAS  Google Scholar 

  15. Arashiba, K., Miyake, Y. & Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nature Chem. 3, 120–125 (2011).

    Article  CAS  Google Scholar 

  16. Konishita, E. et al. Synthesis and catalytic activity of molybdenum-dinitrogen complexes bearing unsymmetric PNP-type pincer ligands. Organometallics 31, 8437–8443 (2012).

    Article  CAS  Google Scholar 

  17. Hebden, T. J., Schrock, R. R., Takase, M. K. & Muller, P. Cleavage of dinitrogen to yield a (t-BuPOCOP)molybdenum nitride. Chem. Commun. 48, 1851–1853 (2012).

    Article  CAS  Google Scholar 

  18. Laplaza, C. E. & Cummins, C. C. Dinitrogen cleavage by a three-coordinate molybdenum(III) complex. Science 268, 861–863 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Curley, J. J., Cozzolino, A. F. & Cummins, C. C. Nitrogen fixation to cyanide at a molybdenum center. Dalton Trans. 40, 2429–2432 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Peters, J. C. & Mehn, M. P. in Activation of Small Molecules (ed. Tolman, W. B.) 81–119 (VCH, 2006).

    Book  Google Scholar 

  21. Scepaniak, J. J., Young, J. A., Bontchev, R. P. & Smith, J. M. Formation of ammonia from an iron nitrido complex. Angew. Chem. Int. Ed. 48, 3158–3160 (2009).

    Article  CAS  Google Scholar 

  22. Scepaniak, J. J., Bontchev, R. P., Johnson, D. L. & Smith, J. M. Snapshots of complete nitrogen atom transfer from an iron(IV) nitrido complex. Angew. Chem. Int. Ed. 50, 6630–6633 (2011).

    Article  CAS  Google Scholar 

  23. Scepaniak, J. J. et al. Synthesis, structure, and reactivity of an iron(V) nitride. Science 331, 1049–1052 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Crossland, J. L., Balesdent, C. G. & Tyler, D. R. Coordination of a complete series of N2 reduction intermediates (N2H2, N2H4, and NH3) to an iron phosphine scaffold. Inorg. Chem. 51, 439–445 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Field, L. D., Li, H. L. & Magill, A. M. Base-mediated conversion of hydrazine to diazene and dinitrogen at an iron center. Inorg. Chem. 48, 5–7 (2008).

    Article  CAS  Google Scholar 

  26. Saouma, C. T., Muller, P. & Peters, J. C. Characterization of structurally unusual diiron NxHy complexes. J. Am. Chem. Soc. 131, 10358–10359 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Saouma, C. T., Kinney, R. A., Hoffman, B. M. & Peters, J. C. Transformation of an [Fe(η2-N2H3)]+ species to π-delocalized [Fe2(μ-N2H2)]2+/+ complexes. Angew. Chem. Int. Ed. 50, 3446–3449 (2011).

    Article  CAS  Google Scholar 

  28. Hoffman, B. M., Dean, D. R. & Seefeldt, L. C. Climbing nitrogenase: toward a mechanism of enzymatic nitrogen fixation. Acc. Chem. Res. 42, 609–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, Y., Mankad, N. P. & Peters, J. C. Triggering N2 uptake via redox-induced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron. Nature Chem. 2, 558–565 (2010).

    Article  CAS  Google Scholar 

  30. Moret, M.-E. & Peters, J. C. Terminal iron dinitrogen and iron imide complexes supported by a tris(phosphino)borane ligand. Angew. Chem. Int. Ed. 50, 2063–2067 (2011).

    Article  CAS  Google Scholar 

  31. Moret, M.-E. & Peters, J. C. N2 functionalization at iron metallaboratranes. J. Am. Chem. Soc. 133, 18118–18121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oshita, H., Mizobe, Y. & Hidai, M. Novel disilylation of a dinitrogen ligand. Organometallics 11, 4116–4123 (1992).

    Article  CAS  Google Scholar 

  33. Rodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. N2 Reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 334, 780–783 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schlögl, R. in Handbook of Heterogeneous Catalysis 2nd Edn, Vol. 5 (eds Ertl, G., Knözinger, H. & Weitkamp, J.) 2501–2575 (Wiley-VCH, 2008).

    Google Scholar 

  35. Mortensen, J. J., Hansen, L. B., Hammer, B. & Norskov, J. K. Nitrogen adsorption and dissociation on Fe(111). J. Catal. 182, 479–488 (1999).

    Article  CAS  Google Scholar 

  36. Smith, J. M. et al. Studies of low-coordinate iron dinitrogen complexes. J. Am. Chem. Soc. 128, 756–769 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Figg, T. M., Holland, P. L. & Cundari, T. R. Cooperativity between low-valent iron and potassium promoters in dinitrogen fixation. Inorg. Chem. 51, 7546–7550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pool, J. A., Lobkovsky, E. & Chirik, P. J. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427, 527–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Askevold, B. et al. Ammonia formation by metal–ligand cooperative hydrogenolysis of a nitrido ligand. Nature Chem. 3, 532–537 (2011).

    Article  CAS  Google Scholar 

  40. Yuki, M. et al. Iron-catalysed transformation of molecular dinitrogen into silylamine under ambient conditions. Nature Commun. 3, 1254 (2012).

    Article  CAS  Google Scholar 

  41. Einsle, O. et al. Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297, 1696–1700 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Spatzal, T. et al. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lancaster, K. M. et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harris, T. V. & Szilagyi, R. K. Comparative assessment of the composition and charge state of nitrogenase FeMo-cofactor. Inorg. Chem. 50, 4811–4824 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wiig, J. A., Lee, C. C., Hu, Y. & Ribbe, M. W. Tracing the interstitial carbide of the nitrogenase cofactor during substrate turnover. J. Am. Chem. Soc. 135, 4982–4983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wiig, J. A., Hu, Y., Lee, C. C. & Ribbe, M. W. Radical SAM-dependent carbon insertion into the nitrogenase M-cluster. Science 337, 1672–1675 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Anderson, J. S., Moret, M.-E. & Peters, J. C. Conversion of Fe–NH2 to Fe–N2 with release of NH3 . J. Am. Chem. Soc. 135, 534–537 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lukoyanov, D. et al. Unification of reaction pathway and kinetic scheme for N2 reduction catalyzed by nitrogenase. Proc. Natl Acad. Sci. USA 109, 5583–5587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoffman, B. M., Lukoyanov, D., Dean, D. R. & Seefeldt, L. C. Nitrogenase: a draft mechanism. Acc. Chem. Res. 46, 587–595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burgess, B. K. & Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983–3011 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Fryzuk, M. D. Side-on end-on bound dinitrogen: an activated bonding mode that facilitates functionalizing molecular nitrogen. Acc. Chem. Res. 42, 127–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Bernskoetter, W. H., Olmos, A. V., Pool, J. A., Lobkovsky, E. & Chirik, P. J. N-C bond formation promoted by a hafnocene dinitrogen complex: comparison of zirconium and hafnium congeners. J. Am. Chem. Soc. 128, 10696–10697 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Knobloch, D. J., Toomey, H. E. & Chirik, P. J. Carboxylation of an ansa-zirconocene dinitrogen complex: regiospecific hydrazine synthesis from N2 and CO2 . J. Am. Chem. Soc. 130, 4248–4249 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Knobloch, D. J. et al. Addition of methyl triflate to a hafnocene dinitrogen complex: stepwise N2 methylation and conversion to a hafnocene hydrazonato compound. J. Am. Chem. Soc. 131, 14903–14912 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Knobloch, D. J., Lobkovsky, E. & Chirik, P. J. Carbon monoxide-induced dinitrogen cleavage with group 4 metallocenes: reaction scope and coupling to N-H bond formation and CO deoxygenation. J. Am. Chem. Soc. 132, 10553–10564 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Knobloch, D. J., Lobkovsky, E. & Chirik, P. J. Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex. Nature Chem. 2, 30–35 (2010).

    Article  CAS  Google Scholar 

  57. Knobloch, D. J., Semproni, S. P., Lobkovsky, E. & Chirik, P. J. Studies into the mechanism of CO-induced N2 cleavage promoted by an ansa-hafnocene complex and C-C bond formation from an observed intermediate. J. Am. Chem. Soc. 134, 3377–3386 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Semproni, S. P., Milsmann, C. & Chirik, P. J. Structure and reactivity of a hafnocene μ-nitrido prepared from dinitrogen cleavage. Angew. Chem. Int. Ed. 51, 5213–5216 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors' research on N2 reduction has been generously supported by the National Institutes of Health (GM065313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. Holland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLeod, K., Holland, P. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nature Chem 5, 559–565 (2013). https://doi.org/10.1038/nchem.1620

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing