Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface

Abstract

Manganese porphyrins have been extensively investigated as model systems for the natural enzyme cytochrome P450 and as synthetic oxidation catalysts. Here, we report single-molecule studies of the multistep reaction of manganese porphyrins with molecular oxygen at a solid/liquid interface, using a scanning tunnelling microscope (STM) under environmental control. The high lateral resolution of the STM, in combination with its sensitivity to subtle differences in the electronic properties of molecules, allowed the detection of at least four distinct reaction species. Real-space and real-time imaging of reaction dynamics enabled the observation of active sites, immobile on the experimental timescale. Conversions between the different species could be tuned by the composition of the atmosphere (argon, air or oxygen) and the surface bias voltage. By means of extensive comparison of the results to those obtained by analogous solution-based chemistry, we assigned the observed species to the starting compound, reaction intermediates and products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2: Appearance of Mn–porphyrins at the solid/liquid interface.
Figure 1: Possible pathways and states of the manganese centre of Mn-porphyrins during their reaction with O2 or with the single oxygen donor PFIB.
Figure 3: Mn–porphyrin states at the solid/liquid interface under different atmospheres.
Figure 4: Reaction of Mn–porphyrins with single oxygen donor PFIB at the graphite/1-octanoic acid interface.
Figure 5: Imaging of a μ-oxo Mn–porphyrin dimer.
Figure 6: Imaging of a reactive Mn–porphyrin state.

Similar content being viewed by others

References

  1. Tabushi, I. Reductive dioxygen activation by use of artificial cytochrome P450 systems. Coord. Chem. Rev. 86, 1–42 (1988).

    Article  CAS  Google Scholar 

  2. Feiters, M. C., Rowan, A. E. & Nolte, R. J. M. From simple to supramolecular cytochrome P450 mimics. Chem. Soc. Rev. 29, 375–384 (2000).

    Article  CAS  Google Scholar 

  3. Meunier, B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem. Rev. 92, 1411–1456 (1992).

    Article  CAS  Google Scholar 

  4. Mansuy, D. Activation of alkanes – the biomimetic approach. Coord. Chem. Rev. 125, 129–141 (1993).

    Article  CAS  Google Scholar 

  5. Groves, J. T. in Cytochrome P450: Structure, Mechanism, and Biochemistry 3rd edn (ed. Ortiz de Montellano, P. R.) 1–43 (Kluwer Academic/Plenum 2005).

    Book  Google Scholar 

  6. Song, W. J. et al. Synthesis, characterization, and reactivities of manganese(V)–oxo porphyrin complexes. J. Am. Chem. Soc. 129, 1268–1277 (2007).

    Article  CAS  Google Scholar 

  7. Zhang, R., Horner, J. H. & Newcomb, M. Laser flash photolysis generation and kinetic studies of porphyrin–manganese–oxo intermediates. Rate constants for oxidations effected by porphyrin–Mn–V–oxo species and apparent disproportionation equilibrium constants for porphyrin–Mn–IV–oxo species. J. Am. Chem. Soc. 127, 6573–6582 (2005).

    Article  CAS  Google Scholar 

  8. Grim, P. C. M. et al. Submolecularly resolved polymerization of diacetylene molecules on the graphite surface observed with scanning tunneling microscopy. Angew. Chem. Int. Ed. Engl. 36, 2601–2603 (1997).

    Article  CAS  Google Scholar 

  9. Hla, S-W., Bartels, L., Meyer, G. & Rieder, K. H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    Article  CAS  Google Scholar 

  10. Okawa, Y. & Aono, M. Nanoscale control of chain polymerization. Nature 409, 683–684 (2001).

    Article  CAS  Google Scholar 

  11. Piot, L., Bonifazi, D. & Samorì, P. Organic reactivity in confined spaces under scanning tunneling microscopy control: tailoring the nanoscale world. Adv. Funct. Mater. 17, 3689–3693 (2007).

    Article  CAS  Google Scholar 

  12. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  13. Turner, M. et al. Deprotection, tethering, and activation of a catalytically active metalloporphyrin to a chemically active metal surface: [SAc](4)P–Mn(III)Cl on Ag(100). J. Am. Chem. Soc. 131, 1910–1914 (2009).

    Article  CAS  Google Scholar 

  14. Turner, M. et al. Deprotection, tethering, and activation of a one-legged metalloporphyrin on a chemically active metal surface: NEXAFS, synchrotron XPS, and STM study of [SAc]P–Mn(III)Cl on Ag(100). J. Am. Chem. Soc. 131, 14913–14919 (2009).

    Article  CAS  Google Scholar 

  15. Seufert, K., Auwärter, W. & Barth, J. V. Discriminative response of surface-confined metalloporphyrin molecules to carbon and nitrogen monoxide. J. Am. Chem. Soc. 132, 18141 (2010).

    Article  CAS  Google Scholar 

  16. Beggan, J. P. et al. Control of the axial coordination of a surface-confined manganese(III) porphyrin complex. Nanotechnology 23, 235606 (2012).

    Article  CAS  Google Scholar 

  17. Gopakumar, T. G., Tang, H., Morillo, J. & Berndt, R. Transfer of Cl ligands between adsorbed iron tetraphenylporphyrin molecules. J. Am. Chem. Soc. 134, 11844–11847 (2012).

    Article  CAS  Google Scholar 

  18. Hulsken, B. et al. Real-time single-molecule imaging of oxidation catalysis at a liquid–solid interface. Nature Nanotech. 2, 285–289 (2007).

    Article  CAS  Google Scholar 

  19. Friesen, B. A., Bhattarai, A., Mazur, U. & Hipps, K. W. Single molecule imaging of oxygenation of cobalt octaethylporphyrin at the solution/solid interface: thermodynamics from microscopy. J. Am. Chem. Soc. 134, 14897–14904 (2012).

    Article  CAS  Google Scholar 

  20. Reed, C. A., Kouba, J. K., Grimes, C. J. & Cheung, S. K. Manganese(II) and chromium(II) porphyrin complexes — synthesis and characterization. Inorg. Chem. 17, 2666–2670 (1978).

    Article  CAS  Google Scholar 

  21. Creager, S. E., Raybuck, S. A. & Murray, R. W. An efficient electrocatalytic model cytochrome-P-450 epoxidation cycle. J. Am. Chem. Soc. 108, 4225–4227 (1986).

    Article  CAS  Google Scholar 

  22. Lyons, J. E., Ellis, P. E. & Myers, H. K. Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen. J. Catal. 155, 59–73 (1995).

    Article  CAS  Google Scholar 

  23. Jones, R. D., Summerville, D. A. & Basolo, F. Synthetic oxygen carriers related to biological systems. Chem. Rev. 79, 139–179 (1979).

    Article  CAS  Google Scholar 

  24. Watanabe, Y. & Fujii, H. Metal–Oxo and Metal–Peroxo Species in Catalytic Oxidations 61–89 (Springer, 2000).

    Book  Google Scholar 

  25. Schardt, B. C., Hollander, F. J. & Hill, C. L. Isolation, purification, and characterization of high-valent complexes from a manganese porphyrin based catalytic hydrocarbon activation system—crystal and molecular-structure of μ-oxo-bis[azido(tetraphenylporphinato)–manganese(IV)]. J. Am. Chem. Soc. 104, 3964–3972 (1982).

    Article  CAS  Google Scholar 

  26. Smegal, J. A., Schardt, B. C. & Hill, C. L. Isolation, purification, and characterization of intermediate (iodosylbenzene)metalloporphyrin complexes from the (tetraphenylporphinato)–manganese(III)–iodosylbenzene catalytic hydrocarbon functionalization system. J. Am. Chem. Soc. 105, 3510–3515 (1983).

    Article  CAS  Google Scholar 

  27. Nolte, R. J. M., Razenberg, J. A. S. J. & Schuurman, R. On the rate-determining step in the epoxidation of olefins by monooxygenase models. J. Am. Chem. Soc. 108, 2751–2752 (1986).

    Article  CAS  Google Scholar 

  28. Van der Made, A. W., Nolte, R. J. M. & Drenth, W. On the mechanism of epoxidation of alkenes with hypochlorite, catalyzed by manganese(III) tetraarylporphyrins. Recl. Trav. Chim. Pays-Bas 109, 537–551 (1990).

    Article  CAS  Google Scholar 

  29. Dismukes, G. C., Sheats, J. E. & Smegal, J. A. Mn2+/Mn3+ and Mn3+/Mn4+ mixed-valence binuclear manganese complexes of biological interest. J. Am. Chem. Soc. 109, 7202–7203 (1987).

    Article  CAS  Google Scholar 

  30. Linares, M. et al. Chiral expression at the solid–liquid interface: a joint experimental and theoretical study of the self-assembly of chiral porphyrins on graphite. Langmuir 24, 9566–9574 (2008).

    Article  CAS  Google Scholar 

  31. Iavicoli, P. et al. Tuning the supramolecular chirality of one- and two-dimensional aggregates with the number of stereogenic centers in the component porphyrins J. Am. Chem. Soc. 132, 9350–9362 (2010).

    Article  CAS  Google Scholar 

  32. Hoffman, B. M., Weschler, C. J. & Basolo, F. Dioxygen adduct of meso-tetraphenylporphyrinmanganese(II), a synthetic oxygen carrier. J. Am. Chem. Soc. 98, 5473–5482 (1976).

    Article  CAS  Google Scholar 

  33. Hoffman, B. M., Szymanski, T., Brown, T. G. & Basolo, F. Dioxygen adducts of several manganese(II) porphyrins—electron-paramagnetic resonance studies. J. Am. Chem. Soc. 100, 7253–7259 (1978).

    Article  CAS  Google Scholar 

  34. Jones, R. D., Summerville, D. A. & Basolo, F. Manganese(II) porphyrin oxygen carriers—equilibrium-constants for reaction of dioxygen with para-substituted meso-tetraphenylporphinatomanganese(II) complexes. J. Am. Chem. Soc. 100, 4416–4424 (1978).

    Article  CAS  Google Scholar 

  35. Jones, R. D., Summerville, D. A. & Basolo, F. Synthetic oxygen carriers related to biological systems. Chem. Rev. 79, 139–179 (1979).

    Article  CAS  Google Scholar 

  36. Fabris, S. et al. Oxygen dissociation by concerted action of di-iron centers in metal–organic coordination networks at surfaces: modeling non-heme iron enzymes. Nano Lett. 11, 5414–5420 (2011).

    Article  CAS  Google Scholar 

  37. Huskens, J. et al. A model for describing the thermodynamics of multivalent host–guest interactions at interfaces. J. Am. Chem. Soc. 126, 6784–6797 (2004).

    Article  CAS  Google Scholar 

  38. Miyake, K. et al. Molecular motion of surface-immobilized double-decker phthalocyanine complexes. J. Am. Chem. Soc. 131, 17808–17813 (2009).

    Article  CAS  Google Scholar 

  39. Oyaizu, K., Haryono, A., Yonemaru, H. & Tsuchida, E. Catalytic behavior of a μ-oxo dimanganese(III) octaethylporphyrin in O2 reduction. J. Chem. Soc. Faraday Trans. 94, 3393–3399 (1998).

    Article  CAS  Google Scholar 

  40. He, Y. & Borguet, E. Dynamics of porphyrin electron-transfer reactions at the electrode–electrolyte interface at the molecular level. Angew. Chem. Int. Ed. 46, 6098–6101 (2007).

    Article  CAS  Google Scholar 

  41. Bai, Y. et al. Interfacial coordination interactions studied on cobalt octaethylporphyrin and cobalt tetraphenylporphyrin monolayers on Au(111). Phys. Chem. Chem. Phys. 12, 4336–4344 (2010).

    Article  CAS  Google Scholar 

  42. Suárez, S. A. et al. A surface effect allows HNO/NO discrimination by a cobalt porphyrin bound to gold. Inorg. Chem. 49, 6955–6966 (2010).

    Article  Google Scholar 

  43. Hieringer, W. et al. The surface trans effect: influence of axial ligands on the surface chemical bonds of adsorbed metalloporphyrins. J. Am. Chem. Soc. 133, 6206–6222 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NanoNed (the Dutch nanotechnology initiative of the Ministry of Economic Affairs), the Foundation for Fundamental Research on Matter (FOM programme Atomic and Molecular Nanophysics) and the Ministry of Education, Culture and Science (Gravity program 024.001.035) are acknowledged for financial support. D.B.A. acknowledges funding from projects CTQ2010-16339 and 2009 SGR 158. S.D.F. acknowledges support from the Fund of Scientific Research−Flanders (FWO), KU Leuven (GOA) and the Belgian Federal Science Policy Office (IAP-P7/05). J.A.A.W.E. and T.H. thank the Council for the Chemical Sciences of The Netherlands Organisation for Scientific Research (CW-NWO) for a Vidi grant (700.58.423) and an ECHO grant (700.57.023), respectively. J.A.A.W.E. thanks the European Research Council for an ERC Starting Grant (NANOCAT – 259064).

Author information

Authors and Affiliations

Authors

Contributions

J.A.A.W.E., S.D.F. and D.B.A. conceived the idea and designed the experiments. D.d.B. and M.L. performed the STM experiments. T.H. and D.d.B. carried out data analyses, and P.I. synthesized and characterized the compound. D.d.B., M.L. and J.A.A.W.E. co-wrote the paper. All authors analysed and discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to David B. Amabilino, Steven De Feyter or Johannes A. A. W. Elemans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2469 kb)

Supplementary Movie

Supplementary Movie (AVI 32467 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

den Boer, D., Li, M., Habets, T. et al. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nature Chem 5, 621–627 (2013). https://doi.org/10.1038/nchem.1667

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1667

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing