Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Initiation of carbon nanotube growth by well-defined carbon nanorings

Abstract

Carbon nanotubes (CNTs), tubular molecular entities that consist of sp2-hybridized carbon atoms, are currently produced as mixtures that contain tubes of various diameters and different sidewall structures. The electronic and optical properties of CNTs are determined by their diameters and sidewall structures and so a controlled synthesis of uniform-diameter, single-chirality CNTs—a significant chemical challenge—would provide access to pure samples with predictable properties. Here we report a rational bottom-up approach to synthesize structurally uniform CNTs using carbon nanorings (cycloparaphenylenes) as templates and ethanol as the carbon source. The average diameter of the CNTs formed is close to that of the carbon nanorings used, which supports the operation of a ‘growth-from-template’ mechanism in CNT formation. This bottom-up organic chemistry approach is intrinsically different from other conventional approaches to making CNTs and, if it can be optimized sufficiently, offers a route to the programmable synthesis of structurally uniform CNTs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A ‘growth-from-template’ strategy for the bottom-up synthesis of structurally uniform CNTs.
Figure 2: CPP-initiated CNT growth.
Figure 3: Infrared and fluorescence spectra of [12]CPP decomposition experiments.
Figure 4: Possible mechanisms of CPP-initiated CNT growth.

Similar content being viewed by others

References

  1. Dresselhaus, M., Dresselhaus, G. & Avouris, P. Carbon Nanotubes: Synthesis, Properties and Applications (Springer, 2001).

    Book  Google Scholar 

  2. Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007).

    Article  CAS  Google Scholar 

  3. Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341–350 (2008).

    Article  CAS  Google Scholar 

  4. Sgobba, V. & Guldi, D. M. Carbon-nanotubes electronic/electrochemical properties and application for nanoelectronics and photonics. Chem. Soc. Rev. 38, 165–184 (2009).

    Article  CAS  Google Scholar 

  5. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

    Article  CAS  Google Scholar 

  6. Bachilo, S. M. et al. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003).

    Article  CAS  Google Scholar 

  7. Chiang, W-H. & Sankaran, R. M. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1–x nanoparticles. Nature Mater. 8, 882–886 (2009).

    Article  CAS  Google Scholar 

  8. Kato, T. & Hatakeyama, R. Direct growth of short single-walled carbon nanotubes with narrow-chirality distribution by time-programmed plasma chemical vapor deposition. ACS Nano 4, 7395–7400 (2010).

    Article  CAS  Google Scholar 

  9. Tu, X., Manohar, S., Jagota, A. & Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009).

    Article  CAS  Google Scholar 

  10. Tu, X., Walker, A. R. H., Khripin, C. Y. & Zheng, M. Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. J. Am. Chem. Soc. 133, 12998–13001 (2011).

    Article  CAS  Google Scholar 

  11. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  12. Ghosh, S., Bachilo, S. M. & Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nature Nanotech. 5, 443–450 (2010).

    Article  CAS  Google Scholar 

  13. Liu, H., Nishide, D., Tanaka, T. & Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nature Commun. 2, 309 (2011).

    Article  Google Scholar 

  14. Fort, E. H. & Scott, L. T. Carbon nanotubes from short hydrocarbon templates. Energy analysis of the Diels–Alder cycloaddition/rearomatization growth strategy. J. Mater. Chem. 21, 1373–1381 (2011).

    Article  CAS  Google Scholar 

  15. Scott, L. T. et al. A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis. J. Am. Chem. Soc. 134, 107–110 (2012).

    Article  CAS  Google Scholar 

  16. Omachi, H., Segawa, Y. & Itami, K. Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45, 1378–1389 (2012).

    Article  CAS  Google Scholar 

  17. Jasti, R. & Bertozzi, C. R. Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem. Phys. Lett. 494, 1–7 (2010).

    Article  CAS  Google Scholar 

  18. Yao, Y., Feng, C., Zhang, J. & Liu, Z. ‘Cloning’ of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett. 9, 1673–1677 (2009).

    Article  CAS  Google Scholar 

  19. Yu, X. et al. Cap formation engineering: from opened C60 to single-walled carbon nanotubes. Nano Lett. 10, 3343–3349 (2010).

    Article  CAS  Google Scholar 

  20. Li, H-B., Page, A. J., Irle, S. & Morokuma, K. Single-walled carbon nanotube growth from chiral carbon nanorings: prediction of chirality and diameter influence on growth rates. J. Am. Chem. Soc. 134, 15887–15896 (2012).

    Article  CAS  Google Scholar 

  21. Jasti, R., Bhattacharjee, J., Neaton, J. B. & Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008).

    Article  CAS  Google Scholar 

  22. Takaba, H., Omachi, H., Yamamoto, Y., Bouffard, J. & Itami, K. Selective synthesis of [12]cycloparaphenylene. Angew. Chem. Int. Ed. 48, 6112–6116 (2009).

    Article  CAS  Google Scholar 

  23. Yamago, S., Watanabe, Y. & Iwamoto, T. Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex. Angew. Chem. Int. Ed. 49, 757–759 (2010).

    Article  CAS  Google Scholar 

  24. Omachi, H., Matsuura, S., Segawa, Y. & Itami, K. A modular and size-selective synthesis of [n]cycloparaphenylenes: a step toward the selective synthesis of [n,n]single-walled carbon nanotubes. Angew. Chem. Int. Ed. 49, 10202–10205 (2010).

    Article  CAS  Google Scholar 

  25. Segawa, Y. et al. Concise synthesis and crystal structure of [12]cycloparaphenylene. Angew. Chem. Int. Ed. 50, 3244–3248 (2011).

    Article  CAS  Google Scholar 

  26. Iwamoto, T., Watanabe, Y., Sakamoto, Y., Suzuki, T. & Yamago, S. Selective and random syntheses of [n]cycloparaphenylenes (n = 8–13) and size dependence of their electronic properties. J. Am. Chem. Soc. 133, 8354–8361 (2011).

    Article  CAS  Google Scholar 

  27. Sisto, T. J., Golder, M. R., Hirst, E. S. & Jasti, R. Selective synthesis of strained [7]cycloparaphenylene: an orange-emitting fluorophore. J. Am. Chem. Soc. 133, 15800–15802 (2011).

    Article  CAS  Google Scholar 

  28. Xia, J. & Jasti, R. Synthesis, characterization, and crystal structure of [6]cycloparaphenylene. Angew. Chem. Int. Ed. 51, 2474–2476 (2012).

    Article  CAS  Google Scholar 

  29. Ishii, Y. et al. Size-selective synthesis of [9]–[11] and [13]cycloparaphenylenes. Chem. Sci. 3, 2340–2345 (2012).

    Article  CAS  Google Scholar 

  30. Omachi, H., Segawa, Y. & Itami, K. Synthesis and racemization process of chiral carbon nanorings: a step toward the chemical synthesis of chiral carbon nanotubes. Org. Lett. 13, 2480–2483 (2011).

    Article  CAS  Google Scholar 

  31. Yagi, A., Segawa, Y. & Itami, K. Synthesis and properties of [9]cyclo-1,4-naphthylene: a π-extended carbon nanoring. J. Am. Chem. Soc. 134, 2962–2965 (2012).

    Article  CAS  Google Scholar 

  32. Matsui, K., Segawa, Y. & Itami, K. Synthesis and properties of cycloparaphenylene-2,5-pyridylidene: a nitrogen-containing carbon nanoring. Org. Lett. 14, 1888–1891 (2012).

    Article  CAS  Google Scholar 

  33. Hitosugi, S., Nakanishi, W., Yamasaki, T. & Isobe, H. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nature Commun. 2, 492 (2011).

    Article  Google Scholar 

  34. Hitosugi, S., Yamasaki, T. & Isobe, H. Bottom-up synthesis and thread-in-bead structures of finite (n,0)-zigzag single-wall carbon nanotubes. J. Am. Chem. Soc. 134, 12442–12445 (2012).

    Article  CAS  Google Scholar 

  35. Jorio, A. et al. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001).

    Article  CAS  Google Scholar 

  36. Kataura, H. et al. Optical properties of single-wall carbon nanotubes. Synth. Metals 103, 2555–2558 (1999).

    Article  CAS  Google Scholar 

  37. Fort, E. H., Jeffreys, M. S. & Scott, L. T. Diels–Alder cycloaddition of acetylene gas to a polycyclic aromatic hydrocarbon bay region. Chem. Commun. 48, 8102–8104 (2012).

    Article  CAS  Google Scholar 

  38. Luo, Y-R. Handbook of Bond Dissociation Energies in Organic Compounds (CRC, 2003).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Funding Program for Next Generation World-Leading Researchers from the Japan Society for the Promotion of Science (JSPS) (220GR049 to K.I.) and the Tokuyama Science Foundation. FUJIFILM Corporation is acknowledged for various types of support. H.O. thanks JSPS for a predoctoral fellowship. We are very grateful to H. Shinohara and R. Kitaura (Nagoya University) for providing access to their instruments as well as for discussion. C. M. Crudden (Queen's University, Canada) is acknowledged for comments and discussion. We thank T. Kitagawa, K. Miyaura and S. Naruse (Nagoya University) for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

H.O. synthesized [9]CPP and [12]CPP. H.O. and T.N. performed the CNT growth experiments and analyses. E.T. conducted the CPP decomposition experiments. Y.S. provided critical advice. K.I. conceived the concept and prepared the manuscript with feedback from the other authors.

Corresponding author

Correspondence to Kenichiro Itami.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omachi, H., Nakayama, T., Takahashi, E. et al. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nature Chem 5, 572–576 (2013). https://doi.org/10.1038/nchem.1655

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1655

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing