Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simultaneous structure–activity studies and arming of natural products by C–H amination reveal cellular targets of eupalmerin acetate

A Corrigendum to this article was published on 20 June 2013

This article has been updated

Abstract

Natural products have a venerable history of, and enduring potential for the discovery of useful biological activity. To fully exploit this, the development of chemical methodology that can functionalize unique sites within these complex structures is highly desirable. Here, we describe the use of rhodium(II)-catalysed C–H amination reactions developed by Du Bois to carry out simultaneous structure–activity relationship studies and arming (alkynylation) of natural products at ‘unfunctionalized’ positions. Allylic and benzylic C–H bonds in the natural products undergo amination while olefins undergo aziridination, and tertiary amine-containing natural products are converted to amidines by a C–H amination–oxidation sequence or to hydrazine sulfamate zwitterions by an unusual N-amination. The alkynylated derivatives are ready for conversion into cellular probes that can be used for mechanism-of-action studies. Chemo- and site-selectivity was studied with a diverse library of natural products. For one of these—the marine-derived anticancer diterpene, eupalmerin acetate—quantitative proteome profiling led to the identification of several protein targets in HL-60 cells, suggesting a polypharmacological mode of action.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Synthesis of alkynyl sulfamate 9.
Figure 3: Natural product remodelling.
Figure 4: Cytoxicity and proteomic profiling of EuPA and EuPAyne.

Similar content being viewed by others

Change history

  • 22 May 2013

    In the print version of this paper, the stereochemical configuration of the β-lactone starting material 7 is drawn incorrectly ((R)-(–)-3-hydroxy-4,4,4-trichlorobutyric β-lactone purchased from Aldrich was used in this work). As a result, the stereochemical configurations of compounds 8 and 9 and the structure of the R group in Table 1 are also drawn incorrectly. These errors have now been corrected in HTML and PDF versions of this Article.

References

  1. Li, J. W-H. & Vederas, J. C. Drug discovery and natural products: end of an era or an endless frontier? Science 325, 161–165 (2009).

    Article  PubMed  Google Scholar 

  2. Newhouse, T., Baran, P. S. & Hoffmann, R. W. The economies of synthesis. Chem. Soc. Rev. 38, 3010–3021 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schreiber, S. L. Organic synthesis toward small-molecule probes and drugs, special feature. Proc. Natl Acad. Sci. USA 108, 6699–6822 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Koehn, F. E. High impact technologies for natural products screening. Prog. Drug Res. 65, 177–210 (2008).

    Google Scholar 

  5. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311–335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Burdine, L. & Kodadek, T. Target identification in chemical genomics: the (often) missing link. Chem. Biol. 11, 593–597 (2004).

    CAS  PubMed  Google Scholar 

  7. Carlson, E. E. Natural products as chemical probes. ACS Chem. Biol. 5, 639–653 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    CAS  Google Scholar 

  9. Kanoh, N. et al. Immobilization of natural products on glass slides by using a photoaffinity reaction and the detection of protein–small-molecule interactions. Angew Chem. Int. Ed. 42, 5584–5587 (2003).

    CAS  Google Scholar 

  10. Piggott, A. M. & Karuso, P. Quality, not quantity: the role of natural products and chemical proteomics in modern drug discovery. Comb. Chem. High Throughput Screening 7, 607–630 (2004).

    CAS  Google Scholar 

  11. Terstappen, G. C., Schlüpen, C., Raggiaschi, R. & Gaviraghi, G. Target deconvolution strategies in drug discovery. Nature Rev. Drug Discov. 6, 891–903 (2007).

    CAS  Google Scholar 

  12. Peddibhotla, S., Dang, Y., Liu, J. O. & Romo, D. Simultaneous arming and structure/activity studies of natural products employing O–H insertions: an expedient and versatile strategy for natural products-based chemical genetics. J. Am. Chem. Soc. 129, 12222–12231 (2007).

    CAS  PubMed  Google Scholar 

  13. Chamni, S. et al. Diazo reagents with small steric footprints for simultaneous arming/SAR studies of alcohol-containing natural products via OH insertion. ACS Chem. Biol. 6, 1175–1181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou, C-Y., Li, J., Peddibhotla, S. & Romo, D. Mild arming and derivatization of natural products via an In(OTf)3-catalyzed arene iodination. Org. Lett. 12, 2104–2107 (2010).

    CAS  PubMed  Google Scholar 

  15. Robles, O., Serna-Saldívar, S. O., Gutiérrez-Uribe, J. A. & Romo, D. Cyclopropanations of olefin-containing natural products for simultaneous arming and structure activity studies. Org. Lett. 14, 1394–1397 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fiori, K. W. & Du Bois, J. Catalytic intermolecular amination of C–H bonds: method development and mechanistic insights. J. Am. Chem. Soc. 129, 562–568 (2007).

    CAS  PubMed  Google Scholar 

  18. Zalatan, D. N. & Du Bois, J. Understanding the differential performance of Rh2(esp)2 as a catalyst for C–H amination. J. Am. Chem. Soc. 131, 7558–7559 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lebel, H. & Huard, K. De novo synthesis of Troc-protected amines: intermolecular rhodium-catalyzed C–H animation with N-tosyloxycarbamates. Org. Lett. 9, 639–642 (2007).

    CAS  PubMed  Google Scholar 

  20. Guthikonda, K. & Du Bois, J. A unique and highly efficient method for catalytic olefin aziridination. J. Am. Chem. Soc. 124, 13672–13673 (2002).

    CAS  PubMed  Google Scholar 

  21. Lebel, H., Spitz, C., Leogane, O., Trudel, C. & Parmentier, M. Stereoselective rhodium-catalyzed amination of alkenes. Org. Lett. 13, 5460–5463 (2011).

    CAS  PubMed  Google Scholar 

  22. Appendino, G., Tron, G. C., Jarevång, T. & Sterner O. Unnatural natural products from the transannular cyclization of lathyrane diterpenes. Org Lett. 3, 1609–1612 (2001).

    CAS  PubMed  Google Scholar 

  23. Lewis, C. A. & Miller, S. J. Site-selective derivatization and remodeling of erythromycin A by using simple peptide-based chiral catalysts. Angew Chem. Int. Ed. 45, 5616–5619 (2006).

    CAS  Google Scholar 

  24. Miao, H. et al. Ring-opening and ring-closing reactions of a shikimic acid-derived substrate leading to diverse small molecules. J. Comb. Chem. 9, 245–253 (2007).

    CAS  PubMed  Google Scholar 

  25. Li, F. et al. Iminonitroso Diels–Alder reactions for efficient derivatization and functionalization of complex diene-containing natural products. Org Lett. 15, 2923–2926 (2007).

    Google Scholar 

  26. Du Bois, J. Rhodium-catalyzed C–H amination: versatile methodology for the selective preparation of amines and amine derivatives. Chemtracts: Org. Chem. 18, 1–13 (2005).

    CAS  Google Scholar 

  27. Trost, B. M., Boyle, O., Torres, W. & Ameriks, M. K. Development of a flexible strategy towards FR900482 and mitomycins. Chem. Eur. J. 17, 7890–7903 (2011).

    CAS  PubMed  Google Scholar 

  28. Gangapuram, M. & Redda, K. K. Synthesis of substituted N-[4(5-methyl/phenyl-1, 3, 4-oxadiazol-2-yl)-3,6-diphydropyridin-1(2H)-yl]benzamide sulfonamides as anti-inflammatory and anti-cancer agents. J. Heterocycl. Chem. 46, 309–316 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Balthaser, B. R., Maloney, M. C., Beeler, A. B., Porco, J. A. & Snyder, J. K. Remodeling of the natural product fumagillol employing a reaction discovery approach. Nature Chem. 3, 969–973 (2011).

    CAS  Google Scholar 

  30. Huigens, R. W. III, et al. A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nature Chem. 5, 195–202 (2013).

    CAS  Google Scholar 

  31. Jordan, P. A. & Miller, S. J. An approach to the site-selective deoxygenation of hydroxy groups based on catalytic phosphoramidite transfer. Angew Chem. Int. Ed. 51, 2907–2911 (2012).

    CAS  Google Scholar 

  32. Schreiber, K., Schneider, G. & Sembdner, G. Gibberelline-IX: Epoxydation von einigen gibberellinen. Tetrahedron 22, 1437–1444 (1966).

    CAS  Google Scholar 

  33. Dong, Q., Anderson, C. E. & Ciufolini, M. A. Reductive cleavage of troc groups under neutral conditions with cadmium-lead couple. Tetrahedron Lett. 36, 5681–5682 (1995).

    CAS  Google Scholar 

  34. Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nature Rev. Cancer 6, 813–823 (2006).

    CAS  Google Scholar 

  35. Iwamaru, A. et al. Eupalmerin acetate, a novel anticancer agent from Caribbean gorgonian octocorals, induces apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway. Mol. Cancer Ther. 6, 184–192 (2007).

    CAS  PubMed  Google Scholar 

  36. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Hüisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew Chem. Int. Ed. 41, 2596–2599 (2002).

    CAS  Google Scholar 

  37. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Everley, P. A. et al. Assessing enzyme activities using stable isotope labeling and mass spectrometry. Mol. Cell Proteom. 6, 1771–1777 (2007).

    CAS  Google Scholar 

  39. Cisar, J. S. & Cravatt, B. F. Fully functionalized small-molecule probes for integrated phenotypic screening and target identification. J. Am. Chem. Soc. 134, 10385–10388 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ong, S. E. et al. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proc. Natl Acad. Sci. USA 106, 4617–4622 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Murphy, D. et al. Constitutively overexpressed 21 kDa protein in Hodgkin lymphoma and aggressive non-Hodgkin lymphomas identified as cytochrome B5b (CYB5B). Mol. Cancer 9, 14 (2010).

    PubMed  PubMed Central  Google Scholar 

  42. Cathcart, M. C. et al. Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer. Mol. Cancer 10, 25 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, J. H. H. et al. Derlin-1 is overexpressed in human breast carcinoma and protects cancer cells from endoplasmic reticulum stress-induced apoptosis. Breast Cancer Res. 10, R7 (2008).

    PubMed  PubMed Central  Google Scholar 

  44. Simamura, E. S. H., Hatta, T. & Hirai, K. J. Mitochondrial voltage-dependent anion channels (VDACs) as novel pharmacological targets for anti-cancer agents. Bioenerg. Biomembr. 40, 213–217 (2008).

    CAS  Google Scholar 

  45. Wang, C. M. C., Belinson, J. L., Vaziri, S., Ganapathi, R. & Sengupta, S. Role of the 18:1 lysophosphatidic acid–ovarian cancer immunoreactive antigen domain containing 1 (OCIAD)-integrin axis in generating late-stage ovarian cancer. Mol. Cancer Ther. 9, 1709–1718 (2010).

    CAS  PubMed  Google Scholar 

  46. Michaudel, Q., Thevenet, D. & Baran, P. S. J. Intermolecular Ritter-type C–H amination of unactivated sp3 carbons. J. Am. Chem. Soc. 134, 2547–2550 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dai, H-X., Stephan, A. F., Plummer, M. S., Zhang, Y-H. & Yu, J-Q. Divergent C–H functionalizations directed by sulfonamide pharmacophores: late-stage diversification as a tool for drug discovery. J. Am. Chem. Soc. 133, 7222–7228 (2011).

    CAS  PubMed  Google Scholar 

  48. Masahiro, A., Hisanor, N. & Shuinchi, H. Catalytic C–H activation in total synthesis of natural products. Chem. Sci. J. Curr. Rev. 5, 175–191 (2011).

    Google Scholar 

  49. Tayo, L. L., Lu, B., Cruz, L. J. & Yates, J. R. Proteomic analysis provides insights on venom processing in Conus textile. J. Proteome Res. 9, 2292–2301 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Institutes of Health (NIH, GM806307, to D.R.; CA087660, to B.C.; GM086271, to A.D.R.), the Welch Foundation (A-1280, to D.R.), a Ray Kathren American Cancer Society fellowship (to J.S.C.) and a Ruth L. Kirschstein National Research Service Award (F32GM095245-01 to J.S.C.). The Office of the Vice President for Research, the College of Science and the Department of Chemistry at Texas A&M provided seed funding for the TAMU Natural Products LINCHPIN Laboratory. The authors thank S. Serna and J. Rodríguez (Monterrey Institute of Technology) for providing the parthenin used in these studies, and J. Reibenspies and W. Russell for X-ray crystallographic and mass data, respectively.

Author information

Authors and Affiliations

Authors

Contributions

D.R. and B.F.C. jointly conceived the study and supervised the work. D.R., B.F.C., J.L., J.S.C. and C.Z. were involved with the design of the studies, performance of the experiments, and analysis of the results. J.L., J.S.C. and D.R. wrote the manuscript. H.W. assisted with acquisition and analysis of 2D and cryoprobe NMR data. A.D.R. and B.V. isolated and purified samples of eupalmerolide and EuPA and assisted with the NMR analysis of the resultant alkynylated derivatives. All authors edited the manuscript.

Corresponding author

Correspondence to Daniel Romo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6692 kb)

Supplementary information

Crystallographic data for compound 23a (CIF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Cisar, J., Zhou, CY. et al. Simultaneous structure–activity studies and arming of natural products by C–H amination reveal cellular targets of eupalmerin acetate. Nature Chem 5, 510–517 (2013). https://doi.org/10.1038/nchem.1653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1653

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research