Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

C–H bond activation enables the rapid construction and late-stage diversification of functional molecules

Abstract

The beginning of the twenty-first century has witnessed significant advances in the field of C–H bond activation, and this transformation is now an established piece in the synthetic chemists' toolbox. This methodology has the potential to be used in many different areas of chemistry, for example it provides a perfect opportunity for the late-stage diversification of various kinds of organic scaffolds, ranging from relatively small molecules like drug candidates, to complex polydisperse organic compounds such as polymers. In this way, C–H activation approaches enable relatively straightforward access to a plethora of analogues or can help to streamline the lead-optimization phase. Furthermore, synthetic pathways for the construction of complex organic materials can now be designed that are more atom- and step-economical than previous methods and, in some cases, can be based on synthetic disconnections that are just not possible without C–H activation. This Perspective highlights the potential of metal-catalysed C–H bond activation reactions, which now extend beyond the field of traditional synthetic organic chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A timeline showing the evolution of some strategies of organic synthesis.
Figure 2: Late-stage diversification of a wide range of compounds (in areas such as drug development and materials science) via C–H bond activation to give a panel of functionalized analogues.
Figure 3: Applications of C–H bond activation strategies for the construction of a diverse range of complex materials.

Similar content being viewed by others

Torben Rogge, Nikolaos Kaplaneris, … Lutz Ackermann

References

  1. Godula, K. & Sames, D. C–H bond functionalization in complex organic synthesis. Science 312, 67–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Crabtree, R. H. Alkane C–H activation and functionalization with homogenous transition metal catalysts: a century of progress-a new millennium in prospect. J. Chem. Soc. Dalton Trans. 2437–2450 (2001).

  3. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalization: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Yeung, C. S. & Dong, V. M. Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon–hydrogen bonds. Chem. Rev. 111, 1215–1292 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Wencel-Delord, J., Dröge, T., Liu, F. & Glorius, F. Towards mild metal-catalyzed C–H bond activation. Chem. Soc. Rev. 40, 4740–4761 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arockiam, P. B., Bruneau, C. & Dixneuf, P. H. Ruthenium(II)-catalyzed C–H bond activation and functionalization. Chem. Rev. 112, 5879–5918 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, X., Engle, K. M., Wang, D.-H. & Yu, J.-Q. Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: Versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009).

    Article  CAS  Google Scholar 

  10. Li, B.-J. & Shi, Z.-J. From C(sp2)–H to C(sp3)–H: systematic studies on transition metal-catalyzed oxidative C–C formation. Chem. Soc. Rev. 41, 5588–5598 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  Google Scholar 

  12. Chen, D. Y.-K. & Youn, S. W. C–H Activation: A complementary tool in the total synthesis of complex natural products. Chem. Eur. J. 18, 9452–9474 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. McMurray, L., O'Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalyzed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Dai, H.-X., Stepan, A. F., Plummer, M. S., Zhang, Y.-H. & Yu, J.-Q. Divergent C–H functionalizations directed by sulfonamide pharmacophores: Late-stage diversification as a tool for drug discovery. J. Am. Chem. Soc. 133, 7222–7228 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Pham, M. V., Ye, B. & Cramer, N. Access to sultams by rhodium(III)-catalyzed directed C–H activation. Angew. Chem. Int. Ed. 51, 10610–10614 (2012).

    Article  CAS  Google Scholar 

  16. Meyer, C. et al. Exploitation of an additional hydrophobic pocket of σ1 receptors: Late-stage diverse modifications of spirocyclic thiophenes by C–H bond functionalization. Org. Biomol. Chem. 9, 8016–8029 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Alberico, D., Scott, M. E. & Lautens, M. Aryl–aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev. 107, 174–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Roger, J., Gottumukkala, A. L. & Doucet, H. Palladium-catalyzed C3 or C4 direct arylation of heteroaromatic compounds with aryl halides by C–H bond activation. ChemCatChem 2, 20–40 (2010).

    Article  CAS  Google Scholar 

  19. Meyer, C. et al. Late-stage C–H bond arylation of spirocyclic σ1 ligands for analysis of complementary σ1 receptor surface. Eur. J. Org. Chem. 5972–5979 (2012).

    Article  CAS  Google Scholar 

  20. Beydoun, K., Zaarour, M., Williams, J. A. G., Doucet, H. & Guerchais, V. Palladium-catalysed direct arylation of a tris-cyclometallated Ir(III) complex bearing 2,2′-thienylpyridine ligands: a powerful tool for the tuning of luminescence properties. Chem. Commun. 48, 1260–1262 (2012).

    Article  CAS  Google Scholar 

  21. Nakazono, S. et al. Regioselective Ru-catalyzed direct 2,5,8,11-alkylation of perylene bisimides. Chem. Eur. J. 15, 7530–7533 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Nakazono, S., Easwaramoorthi, S., Kim, D., Shinokubo, H. & Osuka, A. Synthesis of arylated perylene bisimides through C–H bond cleavage under ruthenium catalysis. Org. Lett. 11, 5426–5429 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Teraoka, T., Hiroto, S. & Shinokubo, H. Iridium-catalyzed direct tetraborylation of perylene bisimides. Org. Lett. 13, 2532–2535 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Battagliarin, G., Davies, M., Mackowiak, S., Li, C. & Müllen, K. Ortho-functionalized perylenediimides for highly fluorescent water-soluble dyes. ChemPhysChem 13, 923–926 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Cohen, S. M. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev. 112, 970–1000 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Dröge, T., Notzon, A., Fröhlich, R. & Glorius, F. Palladium-catalyzed C–H bond functionalization of a metal-organic framework (MOF): Mild, selective, and efficient. Chem. Eur. J. 17, 11974–11977 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, H., Schlecht, S., Semple, T. C. & Hartwig, J. F. Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Hartwig, J. F. Borylation and silylation of C–H bonds: A platform for diverse C–H bond functionalizations. Acc. Chem. Res. 45, 864–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Kondo, Y. et al. Rhodium-catalyzed, regiospecific functionalization of polyolefins in the melt. J. Am. Chem. Soc. 124, 1164–1165 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Bae, C. et al. Catalytic hydroxylation of polypropylenes. J. Am. Chem. Soc. 127, 767–776 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Bae, C. et al. Regiospecific side-chain functionalization of linear low-density polyethylene with polar groups. Angew. Chem. Int. Ed. 44, 6410–6413 (2005).

    Article  CAS  Google Scholar 

  32. Boaen, N. K. & Hillmyer, M. A. Post-polymerization functionalization of polyolefins. Chem. Soc. Rev. 34, 267–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Shin, J. et al. Controlled functionalization of crystalline polystyrenes via activation of aromatic C–H bonds. Macromolecules 40, 8600–8608 (2007).

    Article  CAS  Google Scholar 

  34. Jo, T. S., Kim, S. H., Shin, J. & Bae, C. Highly efficient incorporation of functional groups into aromatic main-chain polymer using iridium-catalyzed C–H Activation and Suzuki–Miyaura reaction. J. Am. Chem. Soc. 131, 1656–1657 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Shimizu, M. & Hiyama, T. Silicon-bridged biaryls: Molecular design, new synthesis, and luminescence control. Synlett 23, 973–989 (2012).

    Article  CAS  Google Scholar 

  36. Matsuda, T., Kadowaki, S., Goya, T. & Murakami, M. Synthesis of silafluorenes by iridium-catalyzed [2+2+2] cycloaddition of silicon-bridged diynes with alkynes. Org. Lett. 9, 133–136 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Shimizu, M., Mochida, K. & Hiyama, T. Modular approach to silicon-bridged biaryls: palladium-catalyzed intramolecular coupling of 2-(arylsilyl)aryl triflates. Angew. Chem. Int. Ed. 47, 9760–9764 (2008).

    Article  CAS  Google Scholar 

  38. Mochida, K., Shimizu, M. & Hiyama, T. Palladium-catalyzed intramolecular coupling of 2-[(2-pyrrolyl)silyl]aryl triflates through 1,2-silicon migration. J. Am. Chem. Soc. 131, 8350–8351 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Shintani, R., Otomo, H., Ota, K. & Hayashi, T. Palladium-catalyzed asymmetric synthesis of silicon-stereogenic dibenzosiloles via enantioselective C–H bond functionalization. J. Am. Chem. Soc. 134, 7305–7308 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Schipper, D. J. & Fagnou, K. Direct arylation as a synthetic tool for the synthesis of thiophene-based organic electronic materials. Chem. Mater. 23, 1594–1600 (2011).

    Article  CAS  Google Scholar 

  41. Mushrush, M., Facchetti, A., Lefenfeld, M., Katz, H. E. & Marks, T. J. Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements. J. Am. Chem. Soc. 125, 9414–9423 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. He, C.-Y., Fan, S. & Zhang X. Pd-catalyzed oxidative cross-coupling of perfluoroarenes with aromatic heterocycles. J. Am. Chem. Soc. 132, 12850–12852 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Q., Takita, R., Kikuzaki, Y. & Ozawa, F. Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiopene: An efficient approach to head-to-tail poly(3-hexylthiophene). J. Am. Chem. Soc. 132, 11420–11421 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Yokoyama, A., Miyakoshi, R. & Yokozawa, T. Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity. Macromolecules 37, 1169–1171 (2004).

    Article  CAS  Google Scholar 

  45. Miyasaka, M., Fukushima, A., Satoh, T., Hirano, K. & Miura, M. Fluorescent diarylindoles by palladium-catalyzed direct and decarboxylative arylations of carboxyindoles. Chem. Eur. J. 15, 3674–3677 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Feng, X., Pisula, W. & Müllen, K. Large polycyclic aromatic hydrocarbons: Synthesis and discotic organization. Pure Appl. Chem. 81, 2203–2224 (2009).

    Article  CAS  Google Scholar 

  47. Shimizu, M., Nagao, I., Tomioka, Y. & Hiyama, T. Palladium-catalyzed annulation of vic-bis(pinacolatoboryl)alkenes and –phenanthrenes with 2,2′-dibromobiaryls: facile synthesis of functionalized phenanthrenes and dibenzo[g, p]chrysenes. Angew. Chem. Int. Ed. 47, 8096–8099 (2008).

    Article  CAS  Google Scholar 

  48. Mochida, K., Kawasumi, K., Segawa, Y. & Itami, K. Direct arylation of polycyclic aromatic hydrocarbons through palladium catalysis. J. Am. Chem. Soc. 133, 10716–10719 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Kawasumi, K., Mochida, K., Kajino, T., Segawa, Y. & Itami, K. Pd(OAc)2/o-Chloroanil/M(OTf)n: A catalyst for the direct C–H arylation of polycyclic aromatic hydrocarbons with boryl-, silyl-, and unfunctionalized arenes. Org. Lett. 14, 418–421 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Q., Kawasumi, K., Segawa, Y., Itami, K. & Scott, L. T. Palladium-catalyzed C–H activation taken to the limit. Flattening an aromatic bowl by total arylation. J. Am. Chem. Soc. 134, 15664–15667 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Shi, Z., Ding, S., Cui, Y. & Jiao, N. A Palladium-catalyzed oxidative cycloaromatization of biaryls with alkynes using molecular oxygen as the oxidant. Angew. Chem. Int. Ed. 48, 7895–7898 (2009).

    Article  CAS  Google Scholar 

  52. Umeda, N., Tsurugi, H., Satoh, T & Miura, M. Fluorescent naphthyl- and anthrylazoles from the catalytic coupling of phenylazoles with internal alkynes through the cleavage of multiple C–H bonds. Angew. Chem. Int. Ed. 47, 4019–4022 (2008).

    Article  CAS  Google Scholar 

  53. Wu, Y.-T., Huang, K.-H., Shin, C.-C. & Wu, T.-C. Palladium-catalyzed formation of highly substituted naphthalenes from arene and alkyne hydrocarbons. Chem. Eur. J. 14, 6697–6703 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Kaneko, H., Nagae, H., Tsurugi, H. & Mashima, K. End-functionalized polymerization of 2-vinylpyridine through initial C–H bond activation of N-heteroaromatics and internal alkynes by yttrium ene–diamido complexes. J. Am. Chem. Soc. 133, 19626–19629 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Karl Collins for helpful discussions. This work was supported by the European Research Council under the European Community's Seventh Framework Program (FP7 2007-2013)/ERC Grant agreement no 25936.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joanna Wencel-Delord or Frank Glorius.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wencel-Delord, J., Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nature Chem 5, 369–375 (2013). https://doi.org/10.1038/nchem.1607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1607

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing