Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemistry inside molecular containers in the gas phase

Abstract

Inner-phase chemical reactions of guest molecules encapsulated in a macromolecular cavity give fundamental insight into the relative stabilization of transition states by the surrounding walls of the host, thereby modelling the situation of substrates in enzymatic binding pockets. Although in solution several examples of inner-phase reactions are known, the use of cucurbiturils as macrocyclic hosts and bicyclic azoalkanes as guests has now enabled a systematic mass spectrometric investigation of inner-phase reactions in the gas phase, where typically the supply of thermal energy results in dissociation of the supramolecular host–guest assembly. The results reveal a sensitive interplay in which attractive and repulsive van der Waals interactions between the differently sized hosts and guests need to be balanced with a constrictive binding to allow thermally activated chemical reactions to compete with dissociation. The results are important for the understanding of supramolecular reactivity and have implications for catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Reaction and dissociation pathways of the inclusion complexes of the bicyclic azoalkanes 13 with CBn (n = 6–8) in CID experiments.
Figure 3: Geometry-optimized molecular structures (HF/6-31G* level of theory) of [CB7 · 2 · H]+ complexes.
Figure 4: Ion mobilograms.
Figure 5: Model potentials for the interaction of a spherical guest positioned centrosymmetrically inside a host cavity versus guest volume.

Similar content being viewed by others

References

  1. Cram, D. J. Molecular container compounds. Nature 356, 29–36 (1992).

    Article  CAS  Google Scholar 

  2. Mal, P., Breiner, B., Rissanen, K. & Nitschke, J. R. White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 324, 1697–1699 (2009).

    Article  CAS  Google Scholar 

  3. Gibb, C. L. D., Sundaresan, A. K., Ramamurthy, V. & Gibb, B. C. Templation of the excited-state chemistry of alpha-(n-alkyl) dibenzyl ketones: how guest packing within a nanoscale supramolecular capsule influences photochemistry. J. Am. Chem. Soc. 130, 4069–4080 (2008).

    Article  CAS  Google Scholar 

  4. Kang, J. & Rebek, J. Jr Acceleration of a Diels–Alder reaction by a self-assembled molecular capsule. Nature 385, 50–52 (1997).

    Article  CAS  Google Scholar 

  5. Yoshizawa, M., Tamura, M. & Fujita, M. Diels–Alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312, 251–254 (2006).

    Article  CAS  Google Scholar 

  6. Schmidtchen, F. P. Macrotricyclic quaternary ammonium salts: enzyme-analogous activity. Angew. Chem. Int. Ed. Engl. 20, 466–468 (1981).

    Article  Google Scholar 

  7. Hooley, R. J., Biros, S. M. & Rebek, J. Jr A deep, water-soluble cavitand acts as a phase-transfer catalyst for hydrophobic species. Angew. Chem. Int. Ed. 45, 3517–3519 (2006).

    Article  CAS  Google Scholar 

  8. Pluth, M. D., Bergman, R. G. & Raymond, K. N. Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis. Science 316, 85–88 (2007).

    Article  CAS  Google Scholar 

  9. Koblenz, T. S., Wassenaar, J. & Reek, J. N. H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev. 37, 247–262 (2008).

    Article  CAS  Google Scholar 

  10. Dong, Z. Y., Luo, Q. & Liu, J. Q. Artificial enzymes based on supramolecular scaffolds. Chem. Soc. Rev. 41, 7890–7908 (2012).

    Article  CAS  Google Scholar 

  11. Schalley, C. A. Molecular recognition and supramolecular chemistry in the gas phase. Mass Spectrom. Rev. 20, 253–309 (2001).

    Article  CAS  Google Scholar 

  12. Jiang, W. & Schalley, C. A. Tandem mass spectrometry for the analysis of self-sorted pseudorotaxanes: the effects of Coulomb interactions. J. Mass Spectrom. 45, 788–798 (2010).

    Article  CAS  Google Scholar 

  13. Pluth, M. D. & Raymond, K. N. Reversible guest exchange mechanisms in supramolecular host–guest assemblies. Chem. Soc. Rev. 36, 161–171 (2007).

    Article  CAS  Google Scholar 

  14. Nuwaysir, L. M., Castoro, J. A., Yang, C. L. C. & Wilkins, C. L. Gas-phase host guest chemistry of carcerands and hemicarcerands. J. Am. Chem. Soc. 114, 5748–5751 (1992).

    Article  CAS  Google Scholar 

  15. van Wageningen, A. M. A. et al. Calix[4]arene-based (hemi)carcerands and carceplexes: synthesis, functionalization, and molecular modeling study. Chem. Eur. J. 3, 639–654 (1997).

    Article  CAS  Google Scholar 

  16. Schalley, C. A. et al. Structural examination of supramolecular architectures by electrospray ionization mass spectrometry. Eur. J. Org. Chem. 1325–1331 (1999).

    Article  Google Scholar 

  17. Schalley, C. A., Verhaelen, C., Klärner, F-G., Hahn, U. & Vögtle, F. Gas-phase host–guest chemistry of dendritic viologens and molecular tweezers: a remarkably strong effect on dication stability. Angew. Chem. Int. Ed. 44, 477–480 (2005).

    Article  CAS  Google Scholar 

  18. Kalenius, E., Moiani, D., Dalcanale, E. & Vainiotalo, P. Measuring H-bonding supramolecular complexes by gas phase ion–molecule reactions. Chem. Commun. 3865–3867 (2007).

  19. Kalenius, E., Koivukorpi, J., Kolehmainen, E. & Vainiotalo, P. Noncovalent saccharide recognition by means of a tetrakis(bile acid)–porphyrin conjugate: selectivity, cooperation, and stability. Eur. J. Org. Chem. 1052–1058 (2010).

  20. Zhang, H. Z., Paulsen, E. S., Walker, K. A., Krakowiak, K. E. & Dearden, D. V. Cucurbit[6]uril pseudorotaxanes: distinctive gas-phase dissociation and reactivity. J. Am. Chem. Soc. 125, 9284–9285 (2003).

    Article  CAS  Google Scholar 

  21. Dearden, D. V. et al. One ring to bind them all: shape-selective complexation of phenylenediamine isomers with cucurbit[6]uril in the gas phase. J. Phys. Chem. A 113, 989–997 (2009).

    Article  CAS  Google Scholar 

  22. Zhang, H., Grabenauer, M., Bowers, M. T. & Dearden, D. V. Supramolecular modification of ion chemistry: modulation of peptide charge state and dissociation behavior through complexation with cucurbit[n]uril (n = 5, 6) or α-cyclodextrin. J. Phys. Chem. A 113, 1508–1517 (2009).

    Article  CAS  Google Scholar 

  23. Julian, R. R., May, J. A., Stoltz, B. M. & Beauchamp, J. L. Biomimetic approaches to gas phase peptide chemistry: combining selective binding motifs with reactive carbene precursors to form molecular mousetraps. Int. J. Mass Spectrom. 228, 851–864 (2003).

    Article  CAS  Google Scholar 

  24. Julian, R. R., May, J. A., Stoltz, B. M. & Beauchamp, J. L. Molecular mousetraps: gas-phase studies of the covalent coupling of noncovalent complexes initiated by reactive carbenes formed by controlled activation of diazo precursors. Angew. Chem. Int. Ed. 42, 1012–1015 (2003).

    Article  CAS  Google Scholar 

  25. Schalley, C. A. & Springer, A. Mass Spectrometry and Gas-Phase Chemistry of Non-Covalent Complexes. Supramolecular Chemistry in the Gas Phase (Wiley, 2009).

    Google Scholar 

  26. Vrkic, A. K., O'Hair, R. A. J. & Lebrilla, C. B. Unusual covalent bond-breaking reactions of beta-cyclodextrin inclusion complexes of nucleobases/nucleosides and related guest molecules. Eur. J. Mass Spectrom. 9, 563–577 (2003).

    Article  CAS  Google Scholar 

  27. Heo, S. W. et al. Host–guest chemistry in the gas phase: selected fragmentations of CB[6]–peptide complexes at lysine residues and its utility to probe the structures of small proteins. Anal. Chem. 83, 7916–7923 (2011).

    Article  CAS  Google Scholar 

  28. Brinker, U. H. & Miesset, J-L. Molecular Encapsulation: Organic Reactions in Constrained Systems (John Wiley & Sons, 2010).

    Book  Google Scholar 

  29. Carrera, S. S., Kerdelhué, J-L., Langenwalter, K. J., Brown, N. & Warmuth, R. Inner-phase reaction dynamics: the influence of hemicarcerand polarizability and shape on the potential energy surface of an inner-phase reaction. Eur. J. Org. Chem. 2239–2249 (2005).

  30. Warmuth, R., Kerdelhué, J-L., Carrera, S. S., Langenwalter, K. J. & Brown, N. Rate acceleration through dispersion interactions: effect of a hemicarcerand on the transition state of inner phase decompositions of diazirines. Angew. Chem. Int. Ed. 41, 96–99 (2002).

    Article  CAS  Google Scholar 

  31. Nau, W. M., Florea, M. & Assaf, K. I. Deep inside cucurbiturils: physical properties and volumes of their inner cavity determine the hydrophobic driving force for host–guest complexation. Isr. J. Chem. 51, 559–577 (2011).

    Article  CAS  Google Scholar 

  32. Florea, M. & Nau, W. M. Strong binding of hydrocarbons to cucurbituril probed by fluorescent dye displacement: a supramolecular gas-sensing ensemble. Angew. Chem. Int. Ed. 50, 9338–9342 (2011).

    Article  CAS  Google Scholar 

  33. Lagona, J., Mukhopadhyay, P., Chakrabarti, S. & Isaacs, L. The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005).

    Article  CAS  Google Scholar 

  34. Mock, W. L. & Shih, N. Y. Host–guest binding capacity of cucurbituril. J. Org. Chem. 48, 3618–3619 (1983).

    Article  CAS  Google Scholar 

  35. Wang, R., Yuan, L. & Macartney, D. H. Cucurbit[7]uril mediates the stereoselective [4+4] photodimerization of 2-aminopyridine hydrochloride in aqueous solution. J. Org. Chem. 71, 1237–1239 (2006).

    Article  CAS  Google Scholar 

  36. Klöck, C., Dsouza, R. N. & Nau, W. M. Cucurbituril-mediated supramolecular acid catalysis. Org. Lett. 11, 2595–2598 (2009).

    Article  Google Scholar 

  37. Koner, A. L., Márquez, C., Dickman, M. H. & Nau, W. M. Transition-metal-promoted chemoselective photoreactions at the cucurbituril rim. Angew. Chem. Int. Ed. 50, 545–548 (2011).

    Article  CAS  Google Scholar 

  38. Lee, J. W., Samal, S., Selvapalam, N., Kim, H. J. & Kim, K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003).

    Article  CAS  Google Scholar 

  39. Márquez, C., Hudgins, R. R. & Nau, W. M. Mechanism of host–guest complexation by cucurbituril. J. Am. Chem. Soc. 126, 5806–5816 (2004).

    Article  Google Scholar 

  40. Biedermann, F., Uzunova, V. D., Scherman, O. A., Nau, W. M., De Simone, A. Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134, 15318–15323 (2012).

    Article  CAS  Google Scholar 

  41. Bakirci, H., Koner, A. L., Dickman, M. H., Kortz, U. & Nau, W. M. Dynamically self-assembling metalloenzyme models based on calixarenes. Angew. Chem. Int. Ed. 45, 7400–7404 (2006).

    Article  CAS  Google Scholar 

  42. Adam, W. & Miranda, M. A. Thermal and photochemical reactions of bicyclic azoalkanes in concentrated sulfuric acid. J. Org. Chem. 52, 5498–5500 (1987).

    Article  CAS  Google Scholar 

  43. Adam, W., Harrer, H. M., Nau, W. M. & Peters, K. Electronic substituent effects on the acid-catalyzed [4+2] cycloaddition of isopyrazoles with cyclopentadiene and the photochemical and thermal denitrogenation of the resulting 1,4-diaryl-7,7-dimethyl-2,3-diazabicyclo[2.2.1]hept-2-ene azoalkanes to bicyclo[2.1.0]pentanes. J. Org. Chem. 59, 3786–3797 (1994).

    Article  CAS  Google Scholar 

  44. Turecěk, F. & Hanuš, V. Retro-Diels–Alder reaction in mass spectrometry. Mass Spectrom. Rev. 3, 85–152 (1984).

    Article  Google Scholar 

  45. Márquez, C. & Nau, W. M. Two mechanisms of slow host–guest complexation between cucurbit[6]uril and cyclohexylmethylamine: pH-responsive supramolecular kinetics. Angew. Chem. Int. Ed. 40, 3155–3160 (2001).

    Article  Google Scholar 

  46. Griffin, L. L. & Mcadoo, D. J. The effect of ion size on rate of dissociation – RRKM calculations on model large polypeptide ions. J. Am. Soc. Mass Spectrom. 4, 11–15 (1993).

    Article  CAS  Google Scholar 

  47. Vekey, K. Internal energy effects in mass spectrometry. J. Mass Spectrom. 31, 445–463 (1996).

    Article  CAS  Google Scholar 

  48. Lifshitz, C. Tropylium ion formation from toluene – solution of an old problem in organic mass spectrometry. Acc. Chem. Res. 27, 138–144 (1994).

    Article  CAS  Google Scholar 

  49. Mecozzi, S. & Rebek, J. Jr The 55% solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998).

    Article  CAS  Google Scholar 

  50. Ajami, D. et al. Encapsulated carboxylic acid dimers with compressed hydrogen bonds. Angew. Chem. Int. Ed. 50, 528–531 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.I.L., W.M.N. and K.I.A. thank the Deutsche Forschungsgemeinschaft (DFG, grant number NA-686/5), the Deutsche Akademische Austauschdienst (DAAD) and the Center for Functional Materials and Nanomolecular Science (NanoFun) for financial support, including graduate fellowships for A.I.L. and K.I.A. The Academy of Finland is acknowledged by E.K. for financial support (project number 127941). The FT-ICR facility is supported by Biocenter Finland. The authors thank L. Isaacs for making a reference sample of inverted CB7 available, M. Olivucci for donating computing time and D. V. Dearden for helpful comments on the results.

Author information

Authors and Affiliations

Authors

Contributions

T-C.L. initiated this project with E.K., O.A.S. and W.M.N. The manuscript was co-written by T-C.L., A.I.L. and W.M.N. and commented on by all the authors. All mass spectrometry experiments were conducted by E.K. and A.I.L. in the laboratories of J.J. and N.K., and C.H.G. conducted the ion-mobility experiments. K.I.A. performed the quantum-chemical and cross-section calculations. W.M.N. and A.I.L. analysed the data in terms of the model potentials. The student authors T-C.L. and A.I.L. contributed equally.

Corresponding authors

Correspondence to Elina Kalenius or Werner M. Nau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, TC., Kalenius, E., Lazar, A. et al. Chemistry inside molecular containers in the gas phase. Nature Chem 5, 376–382 (2013). https://doi.org/10.1038/nchem.1618

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing