Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A multistep single-crystal-to-single-crystal bromodiacetylene dimerization

Abstract

Packing constraints and precise placement of functional groups are the reason that organic molecules in the crystalline state often display unusual physical or chemical properties not observed in solution. Here we report a single-crystal-to-single-crystal dimerization of a bromodiacetylene that involves unusually large atom displacements as well as the cleavage and formation of several bonds. Density functional theory computations support a mechanism in which the dimerization is initiated by a [2 + 1] photocycloaddition favoured by the nature of carbon–carbon short contacts in the crystal structure. The reaction proceeded up to the theoretical degree of conversion without loss of crystallinity, and it was also performed on a preparative scale with good yield. Moreover, it represents the first synthetic pathway to (E)-1,2-dibromo-1,2-diethynylethenes, which could serve as synthetic intermediates for the preparation of molecular carbon scaffolds. Our findings both extend the scope of single-crystal-to-single-crystal reactions and highlight their potential as a synthetic tool for complex transformations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of ultraviolet-induced topochemical dimerizations.
Figure 2: Crystal structure of bromodiacetylene 1.
Figure 3: 13C NMR spectra (101 MHz, CDCl3) of the glycosylated bromodiacetylene 1.
Figure 4: Displacements and structural rearrangements during the dimerization.
Figure 5: Reaction pathway, energies of intermediates, LOL functions and structural interpretations for the dimerization of the glycosylated bromodiacetylene 1.
Figure 6: 2D NMR spectroscopy for the structural elucidation of 4.

Similar content being viewed by others

References

  1. Kobatake, S., Takami, S., Muto, H., Ishikawa, T. & Irie, M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007).

    Article  CAS  Google Scholar 

  2. Pekker, S. et al. Rotor-stator molecular crystals of fullerenes with cubane. Nature Mater. 4, 764–767 (2005).

    Article  CAS  Google Scholar 

  3. Kuzmanich, G. et al. Oxyallyl exposed: an open-shell singlet with picosecond lifetimes in solution but persistent in crystals of a cyclobutanedione precursor. J. Am. Chem. Soc. 133, 2342–2345 (2011).

    Article  CAS  Google Scholar 

  4. Lemouchi, C. et al. Ultra-fast rotors for molecular machines and functional materials via halogen bonding: crystals of 1,4-bis(iodoethynyl)bicyclo[2.2.2]-octane with distinct gigahertz rotation at two sites. J. Am. Chem. Soc. 133, 6371–6379 (2011).

    Article  CAS  Google Scholar 

  5. Das, D., Jacobs, T. & Barbour, L. J. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. Nature Mater. 9, 36–39 (2010).

    Article  CAS  Google Scholar 

  6. Bolton, O., Lee, K., Kim, H-J., Lin, K. Y. & Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nature Chem. 3, 205–210 (2011).

    Article  CAS  Google Scholar 

  7. Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. 46, 8342–8356 (2007).

    Article  CAS  Google Scholar 

  8. Tanaka, K. & Toda, F. Solvent-free organic synthesis. Chem. Rev. 100, 1025–1074 (2000).

    Article  CAS  Google Scholar 

  9. Ramamurthy, V. & Venkatesan, K. Photochemical reactions of organic crystals. Chem. Rev. 87, 433–481 (1987).

    Article  CAS  Google Scholar 

  10. Halasz, I. Single-crystal-to-single-crystal reactivity: gray, rather than black or white. Crystal Growth Des. 10, 2817–2823 (2010).

    Article  CAS  Google Scholar 

  11. Wegner, G. Topochemical reactions of monomers with conjugated triple bonds. I. Polymerization of derivatives of 2,4-hexadiyne-1,6-diols in the crystalline state. Z. Naturforsch. B 24, 824–832 (1969).

    Article  CAS  Google Scholar 

  12. Enkelmann, V. Structural aspects of the topochemical polymerization of diacetylenes. Adv. Polym. Sci. 63, 91–136 (1984).

    Article  CAS  Google Scholar 

  13. Zuilhof, H. et al. in Supramolecular Photosensitive and Electroactive Materials (ed. Nalwa, H. S.) 339–437 (Academic Press, 2001).

    Book  Google Scholar 

  14. Xiao, J., Yang, M., Lauher, J. W. & Fowler, F. W. A supramolecular solution to a long-standing problem: the 1,6-polymerization of a triacetylene. Angew. Chem. Int. Ed. 39, 2132–2135 (2000).

    Article  CAS  Google Scholar 

  15. Sun, A., Lauher, J. W. & Goroff, N. S. Preparation of poly(diiododiacetylene), an ordered conjugated polymer of carbon and iodine. Science 312, 1030–1034 (2006).

    Article  CAS  Google Scholar 

  16. Xu, R., Gramlich, V. & Frauenrath, H. Alternating diacetylene copolymer utilizing perfluorophenyl–phenyl interactions. J. Am. Chem. Soc. 128, 5541–5547 (2006).

    Article  CAS  Google Scholar 

  17. Xu, R., Schweizer, W. B. & Frauenrath, H. Perfluorophenyl–phenyl interactions in the crystallization and topochemical polymerization of triacetylene monomers. Chem. Eur. J. 15, 9105–9116 (2009).

    Article  CAS  Google Scholar 

  18. Matsumoto, A., Matsumura, T. & Aoki, S. Stereospecific polymerisation of diethyl (Z,Z)-hexa-2,4-dienedioate in the crystalline state. J. Chem. Soc. Chem. Commun. 1389–1390 (1994).

  19. Hoang, T., Lauher, J. W. & Fowler, F. W. The topochemical 1,6-polymerization of a triene. J. Am. Chem. Soc. 124, 10656–10657 (2002).

    Article  CAS  Google Scholar 

  20. Cohen, M. D. & Schmidt, G. M. J. Topochemistry. I. A survey. J. Chem. Soc. 1996–2000 (1964).

  21. Coates, G. W. et al. Phenyl–perfluorophenyl stacking interactions: topochemical [2 + 2] photodimerization and photopolymerization of olefinic compounds. J. Am. Chem. Soc. 120, 3641–3649 (1998).

    Article  CAS  Google Scholar 

  22. Gao, X., Friscic, T. & MacGillivray, L. R. Supramolecular construction of molecular ladders in the solid state. Angew. Chem. Int. Ed. 43, 232–236 (2004).

    Article  CAS  Google Scholar 

  23. Varshney, D. B., Papaefstathiou, G. S. & MacGillivray, L. R. Site-directed regiocontrolled synthesis of a ‘head-to-head’ photodimer via a single-crystal-to-single-crystal transformation involving a linear template. Chem. Commun. 7, 1964–1965 (2002).

    Article  Google Scholar 

  24. Atkinson, M. B. J. et al. A solid-state trimerization of a diene diacid affords a bicyclobutyl: reactant structure from X-ray powder data and product separation and structure determination via co-crystalliztion. Chem. Commun. 47, 236–238 (2011).

    Article  CAS  Google Scholar 

  25. Karunatilaka, C. et al. Softening and hardening of macro- and nano-sized organic cocrystals in a single-crystal transformation. Angew. Chem. Int. Ed. 50, 8642–8646 (2011).

    Article  CAS  Google Scholar 

  26. MacGillivray, L. R. et al. Supramolecular control of reactivity in the solid state: from templates to ladderanes to metal–organic frameworks. Acc. Chem. Res. 41, 280–291 (2008).

    Article  CAS  Google Scholar 

  27. Scheffer, J. R. Crystal lattice control of unimolecular photorearrangements. Acc. Chem. Res. 13, 283–290 (1980).

    Article  CAS  Google Scholar 

  28. Siemsen, P., Livingston, R. C. & Diederich, F. Acetylenic coupling: a powerful tool in molecular construction. Angew. Chem. Int. Ed. 39, 2632–2657 (2000).

    Article  CAS  Google Scholar 

  29. Trost, B. M., Chan, C. & Ruhter, G. Metal-mediated approach to enynes. J. Am. Chem. Soc. 109, 3486–3487 (1987).

    Article  CAS  Google Scholar 

  30. Barluenga, J., de la Rua, R. B., de Saa, D., Ballesteros, A. & Tomas, M. Formal alkyne insertion into alkoxycarbene complexes: simple access to enantiopure group 6 alkynyl(alkoxy)carbene complexes. Angew. Chem. Int. Ed. 44, 4981–4983 (2005).

    Article  CAS  Google Scholar 

  31. Barluenga, J., Gonzalez, J. M., Llorente, I. & Campos, P. J. 1-Iodoalkynes can also be dimerized: a new head-to-tail coupling. Angew. Chem. Int. Ed. Engl. 32, 893–894 (1993).

    Article  Google Scholar 

  32. Diederich, F. Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369, 199–207 (1994).

    Article  CAS  Google Scholar 

  33. Pahadi, N. K., Camacho, D. H., Nakamura, I. & Yamamoto, Y. Palladium-catalyzed dimerization of conjugated diynes: synthesis of (E)-1,2-divinyldiethynylethenes having donor and acceptor chromophores at the terminus of alkyne. J. Org. Chem. 71, 1152–1155 (2006).

    Article  CAS  Google Scholar 

  34. Barluenga, J. et al. Metal carbene dimerization: versatile approach to polyalkynylethenes. Angew. Chem. Int. Ed. 47, 6225–6228 (2008).

    Article  CAS  Google Scholar 

  35. Kim, S., Kim, S., Lee, T., Ko, H. & Kim, D. A new, iterative strategy for the synthesis of unsymmetrical polyynes: application to the total synthesis of 15,16-dihydrominquartynoic acid. Org. Lett. 6, 3601–3604 (2004).

    Article  CAS  Google Scholar 

  36. Hoheisel, T. N. & Frauenrath, H. A convenient Negishi protocol for the synthesis of glycosylated oligo(ethynylene)s. Org. Lett. 10, 4525–4528 (2008).

    Article  CAS  Google Scholar 

  37. Metrangolo, P. & Resnati, G. Halogen bonding: a paradigm in supramolecular chemistry. Chem. Eur. J. 7, 2511–2519 (2001).

    Article  CAS  Google Scholar 

  38. Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. Halogen bonds in biological molecules. Proc. Natl Acad. Sci. USA 101, 16789–16794 (2004).

    Article  CAS  Google Scholar 

  39. Plourde, G. W. II, Warner, P. M., Parrish, D. A. & Jones, G. B. Halo-enediynes: probing the electronic and stereoelectronic contributions to the Bergman cycloaromatization. J. Org. Chem. 67, 5369–5374 (2002).

    Article  CAS  Google Scholar 

  40. Desiraju, G. R. & Kannan, V. What is the maximum yield in the solid state cinnamic acid dimerization? A combinatorial mathematical approach. Proc. Indian Acad. Sci. (Chem. Sci.) 96, 351–362 (1986).

    Article  CAS  Google Scholar 

  41. Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. Topochemistry. II. The photochemistry of trans-cinnamic acids. J. Chem. Soc. 2000–2013 (1964).

  42. Schmidt, G. M. J. Topochemistry. III. The crystal chemistry of some trans-cinnamic acids. J. Chem. Soc. 2014–2021 (1964).

  43. Schmider, H. L. & Becke, A. D. Chemical content of the kinetic energy density. J. Mol. Struct. (Theochem) 527, 51–61 (2000).

    Article  CAS  Google Scholar 

  44. Steinmann, S. N., Mo, Y. & Corminboeuf, C. How do electron localization functions describe π-electron delocalization? Phys. Chem. Chem. Phys. 13, 20584–20592 (2011).

    Article  CAS  Google Scholar 

  45. Steinmann, S. N. & Corminboeuf, C. A system-dependent density-based dispersion correction. J. Chem. Theo. Comp. 6, 1990–2001 (2010).

    Article  CAS  Google Scholar 

  46. Steinmann, S. N. & Corminboeuf, C. A generalized-gradient approximation exchange hole model for dispersion coefficients. J. Chem. Phys. 134, 044117 (2011).

    Article  Google Scholar 

  47. Seburg, R. A. & McMahon, R. J. Automerizations and isomerization in propynylidene (HCCCH), propadienylidene (H2CCC), and cyclopropenylidene (c-C3H2). Angew. Chem. Int. Ed. Engl. 34, 2009–2012 (1995).

    Article  CAS  Google Scholar 

  48. Thomas, P. S., Bowling, N. P. & McMahon, R. J. Spectroscopy and photochemistry of triplet methylpentadiynylidene. J. Am. Chem. Soc. 131, 8649–8659 (2009).

    Article  CAS  Google Scholar 

  49. Ito, S. & Morita, N. Product class 10: fulvenes. Sci. Synth. 45a, 429–482 (2009).

    Google Scholar 

  50. Kotting, C., Sander, W. & Senzlober, M. Evidence for the non-concerted addition of difluorovinylidene to acetylenes. Chem. Eur. J. 4, 2360–2365 (1998).

    Article  CAS  Google Scholar 

  51. Baird, M. S. Thermally induced cyclopropene–carbene rearrangements: an overview. Chem. Rev. 103, 1271–1294 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding from the European Research Council (ERC Grant 239831, ‘OrgElNanoCarbMater’), the Swiss National Science Foundation (SNF Grant 200020-121812) and ETH Zürich (ETH Research Grant ETH-05 08-2) is acknowledged. T.K.T. acknowledges financial support from the Marie Heim-Voegtlin grant PMPDP2_134151/1. C.C. thanks the Sandoz Family Foundation and the Swiss National Science Foundation (Grants 200021-121577 and 200021-137529).

Author information

Authors and Affiliations

Authors

Contributions

T.N.H. and S.S. synthesized, characterized and crystallized the monomers, conducted the dimerization experiments, characterized the products and contributed to the preparation of the manuscript. R.M. assisted in the synthesis. T.K.T. performed the DFT computations designed and directed by C.C.; both these authors contributed to the preparation of the manuscript. A.S. performed the ESR measurements. R.S. and W.B.S. performed the X-ray crystal structure analyses. H.F. designed and directed the research and wrote the manuscript.

Corresponding author

Correspondence to Holger Frauenrath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10599 kb)

Supplementary information

Crystallographic data for compound 1. (CIF 20 kb)

Supplementary information

Crystallographic data for compound 3. (CIF 20 kb)

Supplementary information

Crystallographic data for a second polymorph of compound 1. (CIF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoheisel, T., Schrettl, S., Marty, R. et al. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization. Nature Chem 5, 327–334 (2013). https://doi.org/10.1038/nchem.1575

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing