Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular tweezers modulate 14-3-3 protein–protein interactions

Abstract

Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein–protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular tweezers.
Figure 2: Molecular tweezers binding to 14-3-3.
Figure 3: Competition between molecular tweezers and FAM-C-RafpS259 (green) or FAM-ExoS (black) with respect to their binding sites on 14-3-3σ.
Figure 4: Structure of molecular tweezers bound to 14-3-3σ.
Figure 5: Prerequisites for efficient surface lysine complexation by molecular tweezers in proteins.
Figure 6: Relative position of the molecular tweezers' binding site compared to C-RafpS259 and ExoS.

Similar content being viewed by others

References

  1. Gale, P. A. (ed.) Supramolecular chemistry anniversary. Chem. Soc. Rev. 36, 141–142 (2007).

    Google Scholar 

  2. Gale, P. A. & Steed, J. W. (eds) Supramolecular Chemistry: From Molecules to Nanomaterials (Wiley, 2012).

    Google Scholar 

  3. Schrader, T. & Koch, S. Artificial protein sensors. Mol. BioSyst. 3, 241–248 (2007).

    CAS  PubMed  Google Scholar 

  4. Peczuh, M. W. & Hamilton, A. D. Peptide and protein recognition by designed molecules. Chem. Rev. 100, 2479–2494 (2000).

    CAS  PubMed  Google Scholar 

  5. Yin, H. & Hamilton, A. D. Strategies for targeting protein–protein interactions with synthetic agents. Angew. Chem. Int. Ed. 44, 4130–4163 (2005).

    CAS  Google Scholar 

  6. Martos, V., Castreño, P., Valero, J. & de Mendoza, J. Binding to protein surfaces by supramolecular multivalent scaffolds. Curr. Opin. Chem. Biol. 12, 698–706 (2008).

    CAS  PubMed  Google Scholar 

  7. Gradl, S. N., Felix, J. P., Isacoff, E. Y., Garcia, M. L. & Trauner, D. Protein surface recognition by rational design: nanomolar ligands for potassium channels. J. Am. Chem. Soc. 125, 12668–12669 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Martos, V., Bell, S. C., Santos, E., Isacoff, E. Y., Trauner, D. & de Mendoza, J. Calix[4]arene-based conical-shaped ligands for voltage-dependent potassium channels. Proc. Natl Acad. Sci. USA 106, 10482–10486 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gordo, S. et al. Stability and structural recovery of the tetramerization domain of p53–R337H mutant induced by a designed templating ligand. Proc. Natl Acad. Sci. USA 105, 16426–16431 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nguyen, H. D., Dang, D. T., van Dongen, J. L. J. & Brunsveld, L. Supramolecular induced protein dimerization with cucurbit[8]uril. Angew. Chem. Int. Ed. 49, 895–898 (2010).

    CAS  Google Scholar 

  11. Ader, C. et al. A structural link between inactivation and block of a K+ channel. Nature Struct. Mol. Biol. 15, 605–612 (2008).

    CAS  Google Scholar 

  12. Chinai, J. M. et al. Molecular recognition of insulin by a synthetic receptor. J. Am. Chem. Soc. 133, 8810–8813 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. McGovern, R. E., Fernandes, H., Khan, A. R., Powera, N. P. & Crowley, P. B. Protein camouflage in cytochrome c–calixarene complexes. Nature Chem. 4, 527–533 (2012).

    CAS  Google Scholar 

  14. Fokkens, M., Schrader, T. & Klärner, F-G. A molecular tweezer for lysine and arginine. J. Am. Chem. Soc. 127, 14415–14421 (2005).

    CAS  PubMed  Google Scholar 

  15. Talbiersky, P., Bastkowski, F., Klärner, F-G. & Schrader, T. Molecular clip and tweezer introduce new mechanisms of enzyme inhibition. J. Am. Chem. Soc. 130, 9824–9828 (2008).

    CAS  PubMed  Google Scholar 

  16. Klärner, F-G. et al. Molecular tweezer and clip in aqueous solution: unexpected self-assembly, powerful host–guest complex formation and quantum chemical 1H NMR shift calculation. J. Am. Chem. Soc. 128, 4831–4841 (2006).

    Article  PubMed  Google Scholar 

  17. Klärner, F-G. et al. The effect of molecular clips and tweezers on enzymatic reactions by binding coenzymes and basic amino acids. Pure Appl. Chem. 82, 991–999 (2010).

    Google Scholar 

  18. Wells, J. A. & McClendon, C. L. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450, 1001–1009 (2007).

    CAS  PubMed  Google Scholar 

  19. Morrison, D. K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 19, 16–23 (2009).

    CAS  PubMed  Google Scholar 

  20. Fantl, W. J. et al. Activation of Raf-1 by 14-3-3 proteins. Nature 371, 612–614 (1994).

    CAS  PubMed  Google Scholar 

  21. Molzan, M. et al. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Mol. Cell Biol. 19, 4698–4711 (2010).

    Google Scholar 

  22. Vassilev, A., Kaneko, K. J., Shu, H., Zhao, Y. & DePamphilis, M. L. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 15, 1229–1241 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schumacher, B., Skwarczynska, M., Rose, R. & Ottmann, C. Structure of a 14-3-3σ-YAP phosphopeptide complex at 1.15 Å resolution. Acta Crystallogr. F 66, 978–984 (2010).

    CAS  Google Scholar 

  24. Rajagopalan, S., Sade, R. S., Townsley, F. M. & Fersht, A. R. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res. 38, 893–906 (2010).

    CAS  PubMed  Google Scholar 

  25. Schumacher, B., Mondry, J., Thiel, P., Weyand, M. & Ottmann, C. Structure of the p53 C-terminus bound to 14-3-3: implications for stabilization of the p53 tetramer. FEBS Lett. 584, 1443–1448 (2010).

    CAS  PubMed  Google Scholar 

  26. Fu, H., Coburn, J. & Collier, R. J. The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc. Natl Acad. Sci. USA 90, 2320–2324 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ottmann, C. et al. Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis. EMBO J. 26, 902–913 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hermeking, H. The 14-3-3 cancer connection. Nature Rev. Cancer 3, 931–943 (2003).

    CAS  Google Scholar 

  29. Berg, D., Holzmann, C. & Riess, O. 14-3-3 proteins in the nervous system. Nature Rev. Neurosci. 9, 752–762 (2003).

    Google Scholar 

  30. Morrison, D. K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 19, 16–23 (2009).

    CAS  PubMed  Google Scholar 

  31. Andrews, R. K., Du, X. & Berndt, M. C. The 14-3-3zeta-GPIb-IX-V complex as an antiplatelet target. Drug News Perspect. 20, 285–292 (2007).

    CAS  PubMed  Google Scholar 

  32. Wu, H., Ge, J. & Yao, S. Q. Microarray-assisted high-throughput identification of a cell-permeable small-molecule binder of 14-3-3 proteins. Angew. Chem. Int. Ed. 49, 6528–6532 (2010).

    CAS  Google Scholar 

  33. Corradi, V. et al. Identification of the first non-peptidic small molecule inhibitor of the c-Abl/14-3-3 protein–protein interactions able to drive sensitive and Imatinib-resistant leukemia cells to apoptosis. Bioorg. Med. Chem. Lett. 20, 6133–6137 (2010).

    CAS  PubMed  Google Scholar 

  34. Rose, R. et al. Identification and structure of small-molecule stabilizers of 14-3-3 protein–protein interactions. Angew. Chem. Int. Ed. 49, 4129–4132 (2010).

    CAS  Google Scholar 

  35. Zhao, J. et al. Discovery and structural characterization of a small molecule 14-3-3 protein–protein interaction inhibitor. Proc. Natl Acad. Sci. USA 108, 16212–16216 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Richter, A., Rose, R., Hedberg, C., Waldmann, H. & Ottmann, C. An optimised small-molecule stabiliser of the 14-3-3–PMA2 protein–protein interaction. Chem. Eur. J. 21, 6520–6527 (2012).

    Google Scholar 

  37. Wang, B. et al. Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry 38, 12499–12504 (1999).

    CAS  PubMed  Google Scholar 

  38. Wu, H., Ge, J. & Yao, S. Q. Microarray-assisted high-throughput identification of a cell-permeable small-molecule binder of 14-3-3 proteins. Angew. Chem. Int. Ed. 49, 6528–6532 (2010).

    CAS  Google Scholar 

  39. Corradi, V. et al. Identification of the first non-peptidic small molecule inhibitor of the c-Abl/14-3-3 protein–protein interactions able to drive sensitive and imatinib-resistant leukemia cells to apoptosis. Bioorg. Med. Chem. Lett. 20, 6133–6137 (2010).

    CAS  PubMed  Google Scholar 

  40. Brooks, B. R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    CAS  Google Scholar 

  41. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 14, 33–38 (1996).

    CAS  Google Scholar 

  42. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sherwood, P. et al. QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. J. Mol. Struct. (Teochem) 632, 1–28 (2003).

    CAS  Google Scholar 

  44. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  PubMed  Google Scholar 

  45. Becke, A. D. Density functional thermochemistry. II. The effect of the Perdew–Wang generalized gradient correlation correction. J. Chem. Phys. 97, 9173–9177 (1992).

    CAS  Google Scholar 

  46. Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992).

    Google Scholar 

  47. Mackerell, A. D., Feig, M. Jr & Brooks, C. L. III . Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.O. thanks AstraZeneca, Bayer CropScience, Bayer Healthcare, Boehringer Ingelheim and Merck KGaA for support. E.S-G acknowledges a Liebig stipend and K.B-R. a pre-doctoral stipend from the Fonds der Chemischen Industrie. E.S-G thanks the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft for financial support and W. Thiel for useful suggestions. The authors thank E. Hofmann, F. Syberg, I. Vetter and the SLS beamline staff for data collection at the Swiss Light Source, beamline PXII-X10SA, Paul Scherrer Institute, Villigen, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

D.B., R.R. and M.B. carried out the experiments. K.B.-R. and J.M.R.-A. performed the QM/MM and MD calculations. S.D. and C.W. synthesized the tweezers. F.-G.K. designed their synthesis. C.O., T.S. and E.S.-G. designed the experiments and calculations and wrote the paper.

Corresponding authors

Correspondence to Elsa Sanchez-Garcia, Thomas Schrader or Christian Ottmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7702 kb)

Supplementary Movie 1

Supplementary Movie 1 (WMV 6833 kb)

Supplementary Movie 2

Supplementary Movie 2 (WMV 5005 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bier, D., Rose, R., Bravo-Rodriguez, K. et al. Molecular tweezers modulate 14-3-3 protein–protein interactions. Nature Chem 5, 234–239 (2013). https://doi.org/10.1038/nchem.1570

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing