Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A sustainable catalytic pyrrole synthesis

Abstract

The pyrrole heterocycle is a prominent chemical motif and is found widely in natural products, drugs, catalysts and advanced materials. Here we introduce a sustainable iridium-catalysed pyrrole synthesis in which secondary alcohols and amino alcohols are deoxygenated and linked selectively via the formation of C–N and C–C bonds. Two equivalents of hydrogen gas are eliminated in the course of the reaction, and alcohols based entirely on renewable resources can be used as starting materials. The catalytic synthesis protocol tolerates a large variety of functional groups, which includes olefins, chlorides, bromides, organometallic moieties, amines and hydroxyl groups. We have developed a catalyst that operates efficiently under mild conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alkylation reactions using amino alcohols.
Figure 2: Catalyst design.
Figure 3: Pyrrole syntheses involving diols.

Similar content being viewed by others

References

  1. Vispute, T. P., Zhang, H., Sanna, A., Xiao, R. & Huber, G. W. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330, 1222–1227 (2010).

    Article  CAS  Google Scholar 

  2. Joule, J. A. & Mills, K. in Heterocyclic Chemistry 5th edn (Wiley, 2010).

    Google Scholar 

  3. Nishide, H. & Oyaizu, K. Towards flexible batteries. Science 319, 737–738 (2008).

    Article  CAS  Google Scholar 

  4. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).

    CAS  Google Scholar 

  5. Nakamura, I. & Yamamoto, Y. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem. Rev. 104, 2127–2198 (2004).

    Article  CAS  Google Scholar 

  6. Patil, N. T. & Yamamoto, Y. Metal-mediated synthesis of furans and pyrroles. Arkivoc 10, 121–141 (2007).

    Google Scholar 

  7. Taguchi, K., Sakaguchi, S. & Ishii, Y. Synthesis of quinolines from amino alcohol and ketones catalyzed by [IrCl(cod)]2 or IrCl3 under solvent-free conditions. Tetrahedron Lett. 46, 4539–4542 (2005).

    Article  CAS  Google Scholar 

  8. Rakshit, S., Patureau, F. W. & Glorius, F. Pyrrole synthesis via allylic sp3 C−H activation of enamines followed by intermolecular coupling with unactivated alkynes. J. Am. Chem. Soc. 132, 9585–9587 (2010).

    Article  CAS  Google Scholar 

  9. Maiti, S., Biswas, S. & Jana, U. Iron(III)-catalyzed four-component coupling reaction of 1,3-dicarbonyl compounds, amines, aldehydes, and nitroalkanes: a simple and direct synthesis of functionalized pyrroles. J. Org. Chem. 75, 1674–1683 (2010).

    Article  CAS  Google Scholar 

  10. Liu, W., Jiang, H. & Huang, L. One-pot silver-catalyzed and PIDA-mediated sequential reactions: synthesis of polysubstituted pyrroles directly from alkynoates and amines. Org. Lett. 12, 312–315 (2010).

    Article  CAS  Google Scholar 

  11. Donohoe, T. J., Race, N. J., Bower, J. F. & Callens, C. K. A. Substituted pyrroles via olefin cross-metathesis. Org. Lett. 12, 4094–4097 (2010).

    Article  CAS  Google Scholar 

  12. Stuart, D. R., Alsabeh, P., Kuhn, M. & Fagnou, K. Rhodium(III)-catalyzed arene and alkene C−H bond functionalization leading to indoles and pyrroles. J. Am. Chem. Soc. 132, 18326–18339 (2010).

    Article  CAS  Google Scholar 

  13. Toshiaki, S., Takuya, S., Reiko I., Norio S. & Takeo K. Approach to trisubstituted 3-aminopyrrole derivatives by Yb(OTf)3-catalyzed [4+1] annulation of 2-azadiene with Me3SiCN. Eur. J. Org. Chem. 22, 4237–4244 (2010).

    Google Scholar 

  14. Lin, M., Hao, L. & Ma, R. D. A novel indium-catalyzed three-component reaction: general and efficient one-pot synthesis of substituted pyrroles. Synlett 15, 2345–2351 (2010).

    Article  Google Scholar 

  15. Huestis, M. P., Chan, L., Stuart, D. R. & Fagnou, K. The vinyl moiety as a handle for regiocontrol in the preparation of unsymmetrical 2,3-aliphatic-substituted indoles and pyrroles. Angew. Chem. Int. Ed. 50, 1338–1341 (2011).

    Article  CAS  Google Scholar 

  16. Trost, B. M., Lumb, J-P. & Azzarelli, J. M. An atom-economic synthesis of nitrogen heterocycles from alkynes. J. Am. Chem. Soc. 133, 740–743 (2011).

    Article  CAS  Google Scholar 

  17. Ng, E. P. J., Wang, Y.-F. & Chiba, S. Manganese(III)-catalyzed formal [3+2] annulation of vinyl azides and β-keto acids for synthesis of pyrroles. Synlett 6, 783–786 (2011).

    Google Scholar 

  18. Cai, Q., Zhou, F., Xu, T., Fu, L. & Ding, K. Copper-catalyzed tandem reactions of 1-(2-iodoary)-2-yn-1-ones with isocyanides for the synthesis of 4-oxo-indeno[1,2-b]pyrroles. Org. Lett. 13, 340–343 (2011).

    Article  CAS  Google Scholar 

  19. Yamagishi, M., Nishigai, K., Hata, T. & Urabe H. Nucleophilic addition of sulfonamides to bromoacetylenes: facile preparation of pyrroles. Org. Lett. 13, 4873–4875 (2011).

    Article  CAS  Google Scholar 

  20. Schley, N. D., Dobereiner, G. E. & Crabtree, R. H. Oxidative synthesis of amides and pyrroles via dehydrogenative alcohol oxidation by ruthenium diphosphine diamine complexes. Organometallics 30, 4174–4179 (2011).

    Article  CAS  Google Scholar 

  21. Donohoe, T. J., Bower, J. F. & Chan, L. K. M. Olefin cross-metathesis for the synthesis of heteroaromatic compounds. Org. Biomol. Chem. 10, 1322–1328 (2012).

    Article  CAS  Google Scholar 

  22. Watson, A. J. A. & Williams, J. M. J. The give and take of alcohol activation. Science 329, 635–636 (2010).

    Article  CAS  Google Scholar 

  23. Bähn, S. et al. The catalytic amination of alcohols. ChemCatChem 3, 1853–1864 (2011).

    Article  Google Scholar 

  24. Guillena, G., Ramon, D. J. & Yus, M. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem. Rev. 110, 1611–1641 (2010).

    Article  CAS  Google Scholar 

  25. Gunanathan, C., Ben-David, Y. & Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2 . Science 317, 790–792 (2007).

    Article  CAS  Google Scholar 

  26. Gnanaprakasam, B. & Milstein, D. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Acc. Chem. Res. 44, 588–602 (2011).

    Article  Google Scholar 

  27. Gunanathan, C. & Milstein, D. Bond activation by metal–ligand cooperation: design of ‘green’ catalytic reactions based on aromatization–dearomatization of pincer complexes. Bifunct. Mol. Cat. 37, 55–84 (2011).

    Article  CAS  Google Scholar 

  28. Milstein, D. Discovery of environmentally benign catalytic reactions of alcohols catalyzed by pyridine-based pincer Ru complexes, based on metal–ligand cooperation. Top. Catal. 53, 915–923 (2010).

    Article  CAS  Google Scholar 

  29. Boopathy, G., Balaraman, E., Ben-David, Y. & Milstein, D. Synthesis of peptides and pyrazines from β-amino alcohols through extrusion of H2 catalyzed by ruthenium pincer complexes: ligand-controlled selectivity. Angew. Chem. Int. Ed. 50, 12240–12244 (2011).

    Article  Google Scholar 

  30. Gnanaprakasam, B. & Milstein, D. Synthesis of amides from esters and amines with liberation of H2 under neutral conditions. J. Am. Chem. Soc. 133, 1682–1685 (2011).

    Article  CAS  Google Scholar 

  31. Gnanaprakasam, B., Ben-David, Y. & Milstein, D. Ruthenium pincer-catalyzed acylation of alcohols using esters with liberation of hydrogen under neutral conditions. Adv. Synth. Catal. 352, 3169–3173 (2010).

    Article  CAS  Google Scholar 

  32. Gnanaprakasam, B., Zhang, J. & Milstein, D. Direct synthesis of imines from alcohols and amines with liberation of H2 . Angew Chem. Int. Ed. 49, 1468–1471 (2010).

    Article  CAS  Google Scholar 

  33. Gunanathan, C., Shimon, L. J. & Milstein, D. Direct conversion of alcohols to acetals and H2 catalyzed by an acridine-based ruthenium pincer complex. J. Am. Chem. Soc. 131, 3146–3147 (2009).

    Article  CAS  Google Scholar 

  34. Zhang, J., Leitus, G., Ben-David, Y. & Milstein, D. Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. J. Am. Chem. Soc. 127, 10840–10841 (2005).

    Article  CAS  Google Scholar 

  35. Blank, B., Madalska, M. & Kempe, R. An efficient method for the selective iridium-catalyzed monoalkylation of (hetero)aromatic amines with primary alcohols. Adv. Synth. Catal. 350, 749–758 (2008).

    Article  CAS  Google Scholar 

  36. Blank, B., Michlik, S. & Kempe, R. Selective iridium-catalyzed alkylation of (hetero)aromatic amines and diamines with alcohols under mild reaction conditions. Chem. Eur. J. 15, 3790–3799 (2009).

    Article  CAS  Google Scholar 

  37. Blank, B. & Kempe, R. Catalytic alkylation of methyl-N-heteroaromatics with alcohols. J. Am. Chem. Soc. 132, 924–925 (2010).

    Article  CAS  Google Scholar 

  38. Blank, B., Michlik, S. & Kempe, R. Synthesis of selectively mono-N-arylated aliphatic diamines via iridium-catalyzed amine alkylation. Adv. Synth. Catal. 351, 2903–2911 (2009).

    Article  CAS  Google Scholar 

  39. Michlik S., Hille, T. & Kempe, R. The iridium-catalyzed synthesis of symmetrically and unsymmetrically alkylated diamines under mild reaction conditions. Adv. Synth. Catal. 354, 847–862 (2012).

    Article  CAS  Google Scholar 

  40. Schirmer, W., Florke, U. & Haupt, H-J. Darstellung, Eigenschaften und Molekülstrukturen von Komplexen des versteiften dreizähnigen Chelatliganden N,N′-Bis(diphenylphosphino)-2,6-diaminopyridin mit MII- und M0-Übergangsmetallen [MII = Ni, Pd, Pt; M0 = Cr, Mo, W]. Z. Anorg. Allg. Chem. 545, 83–97 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (KE 756/23-1). S.M. is also grateful for an Elitenetzwerk Bayern grant. We thank T. Bauer for solving the structure of catalyst II and the iridium trihydride.

Author information

Authors and Affiliations

Authors

Contributions

S.M. carried out the synthesis experiments and analysed the spectroscopic data. S.M. and R.K. designed the experiments and co-wrote the manuscript.

Corresponding author

Correspondence to Rhett Kempe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6871 kb)

Supplementary information

Crystallographic data for [(4-Ph)Tr(NP( iPr)2)(NHP( iPr)2)Ir(cod)] (CIF 16 kb)

Supplementary information

Crystallographic data for [(4-Ph)Tr(NHP(iPr)2 )IrH3] (CIF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michlik, S., Kempe, R. A sustainable catalytic pyrrole synthesis. Nature Chem 5, 140–144 (2013). https://doi.org/10.1038/nchem.1547

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1547

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing