Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins

Abstract

The ideal fluorescent probe for bioimaging is bright, absorbs at long wavelengths and can be implemented flexibly in living cells and in vivo. However, the design of synthetic fluorophores that combine all of these properties has proved to be extremely difficult. Here, we introduce a biocompatible near-infrared silicon–rhodamine probe that can be coupled specifically to proteins using different labelling techniques. Importantly, its high permeability and fluorogenic character permit the imaging of proteins in living cells and tissues, and its brightness and photostability make it ideally suited for live-cell super-resolution microscopy. The excellent spectroscopic properties of the probe combined with its ease of use in live-cell applications make it a powerful new tool for bioimaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SiR dyes used for SNAP-, CLIP-, Halo-tag and tetrazine labelling.
Figure 2: Three-colour confocal fluorescence microscopy of the tagged proteins.
Figure 3: Ex vivo labelling of a rat brain with SiR-SNAP.
Figure 4: Live-cell GSDIM/STORM imaging of nuclear localized H2B-SNAP-SiR.
Figure 5: Confocal and STED imaging of Cep41 protein localization in living U2OS cells.
Figure 6: Site-specific labelling of genetically encoded UAAs with SiR-tetrazine.

Similar content being viewed by others

References

  1. Hinner, M. & Johnsson, K. How to obtain labeled proteins and what to do with them. Curr. Opin. Biotechnol. 21, 766–776 (2010).

    Article  CAS  Google Scholar 

  2. Schneckenburger, H. et al. Light exposure and cell viability in fluorescence microscopy. J. Microsc. 245, 311–318 (2012).

    Article  CAS  Google Scholar 

  3. Pellett, P. A. et al. Two-color STED microscopy in living cells. Biomed Opt Express 2, 2364–2371 (2011).

    Article  Google Scholar 

  4. Wombacher, R. et al. Live-cell super-resolution imaging with trimethoprim conjugates. Nature Methods 7, 717–719 (2010).

    Article  CAS  Google Scholar 

  5. Jones, S. A., Shim, S. H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nature Methods 8, 499–508 (2011).

    Article  CAS  Google Scholar 

  6. van de Linde, S., Heilemann, M. & Sauer, M. Live-cell super-resolution imaging with synthetic fluorophores. Annu. Rev. Phys. Chem. 61, 519–540 (2012).

    Article  Google Scholar 

  7. Koide, Y., Urano, Y., Hanaoka, K., Terai, T. & Nagano, T. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer. ACS Chem. Biol. 6, 600–608 (2011).

    Article  CAS  Google Scholar 

  8. Egawa, T. et al. Development of a far-red to near-infrared fluorescence probe for calcium ion and its application to multicolor neuronal imaging. J. Am. Chem. Soc. 133, 14157–14159 (2011).

    Article  CAS  Google Scholar 

  9. Koide, Y., Urano, Y., Hanaoka, K., Terai, T. & Nagano, T. Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. J. Am. Chem. Soc. 133, 5680–5682 (2011).

    Article  CAS  Google Scholar 

  10. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nature Biotechnol. 21, 86–89 (2003).

    Article  CAS  Google Scholar 

  11. Keppler, A., Pick, H., Arrivoli, C., Vogel, H. & Johnsson, K. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc. Natl Acad. Sci. USA 101, 9955–9959 (2004).

    Article  CAS  Google Scholar 

  12. Wang, T. et al. Spirolactonized Si-rhodamine: a novel NIR fluorophore utilized as a platform to construct Si-rhodamine-based probes. Chem. Commun. 48, 8781–8783 (2012).

    Article  CAS  Google Scholar 

  13. Åkerlöf, G. & Short, A. O. The dielectric constant of dioxane–water mixtures between 0 and 80°. J. Am. Chem. Soc. 58, 1241–1243 (1936).

    Article  Google Scholar 

  14. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    Article  CAS  Google Scholar 

  15. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  Google Scholar 

  16. Held, M. et al. CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nature Methods 7, 747–754 (2010).

    Article  CAS  Google Scholar 

  17. Hell, S. W. Microscopy and its focal switch. Nature Methods 6, 24–32 (2009).

    Article  CAS  Google Scholar 

  18. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nature Methods 8, 1027–1036 (2011).

    Article  CAS  Google Scholar 

  19. Schnell, U., Dijk, F., Sjollema, K. A. & Giepmans, B. N. Immunolabeling artifacts and the need for live-cell imaging. Nature Methods 9, 152–158 (2012).

    Article  CAS  Google Scholar 

  20. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  21. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  22. Folling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Methods 5, 943–945 (2008).

    Article  Google Scholar 

  23. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    Article  CAS  Google Scholar 

  24. Steinhauer, C., Forthmann, C., Vogelsang, J. & Tinnefeld, P. Superresolution microscopy on the basis of engineered dark states. J. Am. Chem. Soc. 130, 16840–16841 (2008).

    Article  CAS  Google Scholar 

  25. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  Google Scholar 

  26. Hein, B. et al. Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. Biophys. J. 98, 158–163 (2010).

    Article  CAS  Google Scholar 

  27. Berning, S., Willig, K. I., Steffens, H., Dibaj, P. & Hell, S. W. Nanoscopy in a living mouse brain. Science 335, 551 (2012).

    Article  CAS  Google Scholar 

  28. Morozova, K. S. et al. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys. J. 99, L13–L15 (2010).

    Article  CAS  Google Scholar 

  29. David, R. Cell cycle: building the centriole. Nature Rev. Mol. Cell. Biol. 12, 342 (2011).

    Article  CAS  Google Scholar 

  30. Azimzadeh, J. & Marshall, W. F. Building the centriole. Curr. Biol. 20, R816–R825 (2010).

    Article  CAS  Google Scholar 

  31. Bettencourt-Dias, M. & Glover, D. M. Centrosome biogenesis and function: centrosomics brings new understanding. Nature Rev. Mol. Cell. Biol. 8, 451–463 (2007).

    Article  CAS  Google Scholar 

  32. Gache, V. et al. Xenopus meiotic microtubule-associated interactome. PLoS One 5, e9248 (2010).

    Article  Google Scholar 

  33. Korvatska, O. et al. Mutations in the TSGA14 gene in families with autism spectrum disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156, 303–311 (2011).

    Article  CAS  Google Scholar 

  34. Lee, J. E. et al. CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nature Genet. 44, 193–199 (2012).

    Article  CAS  Google Scholar 

  35. Lang, K. et al. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nature Chem. 4, 298–304 (2012).

    Article  CAS  Google Scholar 

  36. Plass, T. et al. Amino acids for Diels–Alder reactions in living cells. Angew. Chem. Int. Ed. 51, 4166–4170 (2012).

    Article  CAS  Google Scholar 

  37. Lang, K. et al. Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels–Alder reactions. J. Am. Chem. Soc. 134, 10317–10320 (2012).

    Article  CAS  Google Scholar 

  38. Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  Google Scholar 

  39. Plass, T., Milles, S., Koehler, C., Schultz, C. & Lemke, E. A. Genetically encoded copper-free click chemistry. Angew. Chem. Int. Ed. 50, 3878–3881 (2011).

    Article  CAS  Google Scholar 

  40. Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001).

    Article  CAS  Google Scholar 

  41. Niu, L. & Yu, J. Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys. J. 95, 2009–2016 (2008).

    Article  CAS  Google Scholar 

  42. Mueller, V. et al. STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 101, 1651–1660 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation, the Chemical National Centre of Competence in Research Biology, European Research Council grant no. 243016-PALMassembly and the École Polytechnique Fédérale de Lausanne. G.L. was supported by a Federation of European Biochemical Societies long-term fellowship. K.U. was supported by a Grant-in-Aid for Postdoctoral Fellowships for Foreign Researchers Fellows. C.S. is supported by TRR83, and T.P. by the Fonds der Chemischen Industrie. E.A.L. acknowledges funding from the Emmy Noether program of the Deutsche Forschungsgemeinschaft. E.A.L. and C.S. also acknowledge funding from the SPP 1623 of the Deutsche Forschungsgemeinschaft. The authors thank A. Schena, B. Mollwitz and P. Gönczy for sharing reagents and cell lines, S. Hell and S. Jakobs (MPI Göttingen) for excellent support, Tanja Gilat (Max-Planck Institut (MPI) Göttingen) for preparation of the cells and A. Schönle (MPI Göttingen) for support with the software ImSpector.

Author information

Authors and Affiliations

Authors

Contributions

All authors planned the experiments and co-wrote the paper. K.U. designed the structure of SiR-carboxyl. K.U., L.R. and I.C. performed the chemical syntheses. G.L., K.U. and L.R. characterized the dyes. G.L., A.H. and V.M. performed the confocal and STED microscopy with subsequent data analysis. N.O. and S.M. performed the GSDIM/STORM imaging and data analysis. T.P., C.S. and E.A.L performed the amber suppression experiments and analysis. G.Y., Z-G.L. and P.H. performed the labelling in brain sections.

Corresponding author

Correspondence to Kai Johnsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2206 kb)

Supplementary information

Supplementary movie 1 (AVI 12822 kb)

Supplementary information

Supplementary movie 2 (AVI 836 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukinavičius, G., Umezawa, K., Olivier, N. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nature Chem 5, 132–139 (2013). https://doi.org/10.1038/nchem.1546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1546

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing