Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A thiamin-utilizing ribozyme decarboxylates a pyruvate-like substrate

Subjects

Abstract

Vitamins are hypothesized to be relics of an RNA world, and were probably participants in RNA-mediated primordial metabolism. If catalytic RNAs, or ribozymes, could harness vitamin cofactors to aid their function in a manner similar to protein enzymes, it would enable them to catalyse a much larger set of chemical reactions. The cofactor thiamin diphosphate, a derivative of vitamin B1 (thiamin), is used by enzymes to catalyse difficult metabolic reactions, including decarboxylation of stable α-keto acids such as pyruvate. Here, we report a ribozyme that uses free thiamin to decarboxylate a pyruvate-based suicide substrate (LnkPB). Thiamin conjugated to biotin was used to isolate catalytic individuals from a pool of random-sequence RNAs attached to LnkPB. Analysis of a stable guanosine adduct obtained via digestion of an RNA sequence (clone dc4) showed the expected decarboxylation product. The discovery of a prototypic thiamin-utilizing ribozyme has implications for the role of RNA in orchestrating early metabolic cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A strategy for isolating ribozymes with α-keto acid decarboxylase activity.
Figure 2: In vitro selection of decarboxylase ribozymes.
Figure 3: Mass spectroscopy of the decarboxylation product.
Figure 4: Unmodified thiamin is an effective cofactor

Similar content being viewed by others

References

  1. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    Article  CAS  Google Scholar 

  2. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    Article  CAS  Google Scholar 

  3. White, H. B. Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7, 101–104 (1975).

    Article  Google Scholar 

  4. Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).

    Article  Google Scholar 

  5. Benner, S. A., Ellington, A. D. & Tauer, A. Modern metabolism as a palimpsest of the RNA world. Proc. Natl Acad. Sci. USA 86, 7654–7656 (1989).

    Article  Google Scholar 

  6. Tucker, B. J. & Breaker, R. R. Riboswitches as versatile gene control elements. Curr. Opin. Struct. Biol. 15, 342–348 (2005).

    Article  CAS  Google Scholar 

  7. Marchfelder, A. et al. Small RNAs for defence and regulation in Archaea. Extremophiles 16, 685–696 (2012).

    Article  CAS  Google Scholar 

  8. Irnov, I., Sharma, C. M., Vogel, J. & Winkler, W. C. Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res. 38, 6637–6651 (2010).

    Article  CAS  Google Scholar 

  9. Durand, S. & Storz, G. Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol. Microbiol. 75, 1215–1231 (2010).

    Article  CAS  Google Scholar 

  10. Liu, J. M. & Camilli, A. A broadening world of bacterial small RNAs. Curr. Opin. Microbiol. 13, 18–23 (2010).

    Article  CAS  Google Scholar 

  11. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  Google Scholar 

  12. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  Google Scholar 

  13. Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

    Article  CAS  Google Scholar 

  14. Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    Article  CAS  Google Scholar 

  15. Jadhav, V. R. & Yarus, M. Coenzymes as coribozymes. Biochimie 84, 877–888 (2002).

    Google Scholar 

  16. Tsukiji, S., Pattnaik, S. B. & Suga, H. An alcohol dehydrogenase ribozyme. Nature Struct. Mol. Biol. 10, 713–717 (2004).

    Article  Google Scholar 

  17. Tsukiji, S., Pattnaik, S. B. & Suga, H. Reduction of an aldehyde by a NADH/Zn2+-dependent redox active ribozyme dehydrogenase ribozyme. J. Am. Chem. Soc. 126, 5044–5045 (2004).

    Article  CAS  Google Scholar 

  18. Jadhav, V. R. & Yarus, M. Acyl-CoAs from coenzyme ribozymes. Biochemistry 41, 723–729 (2002).

    Google Scholar 

  19. Li, N. & Huang, F. Ribozyme-catalyzed aminoacylation from CoA thioesters. Biochemistry 44, 4582–4590 (2002).

    Article  Google Scholar 

  20. Coleman, T. M. & Huang, F. RNA-catalyzed thioester synthesis. Chem. Biol. 9, 1227–1236 (2002).

    Article  CAS  Google Scholar 

  21. Kluger, R. & Tittmann, K. Thiamin diphosphate catalysis: enzymic & nonenzymic covalent intermediates. Chem. Rev. 108, 1797–1833 (2008).

    Article  CAS  Google Scholar 

  22. Walsh, C. T. Suicide substrates, mechanism-based enzyme inactivators: recent developments. Ann. Rev. Biochem. 53, 493–535 (1984).

    Article  CAS  Google Scholar 

  23. Jordan, F. Current mechanistic understanding of thiamin diphosphate-dependent enzymatic reactions. Nat. Prod. Rep. 20, 184–201 (2003).

    Article  CAS  Google Scholar 

  24. Schellenberger, A. Sixty years of thiamin diphosphate biochemistry. Biochim. Biophys. Acta 1385, 177–186 (1998).

    Article  CAS  Google Scholar 

  25. Breslow, R. On the mechanism of thiamin action. IV. Evidence from studies on model systems. J. Am. Chem. Soc. 80, 3719–3726 (1958).

    Article  CAS  Google Scholar 

  26. Kuo, D. J. & Jordan, F. Active site directed irreversible inactivation of brewers’ yeast pyruvate decarboxylase by the conjugated substrate analogue (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid: development of a suicide substrate. Biochemistry 22, 3735–3740 (1983).

    Article  CAS  Google Scholar 

  27. Kuo, D. J. & Jordan, F. Direct spectroscopic observation of a brewer's yeast pyruvate decarboxylase-bound enamine intermediate produced from a suicide substrate. J. Biol. Chem. 258, 13415–13417 (1983).

    CAS  PubMed  Google Scholar 

  28. Kluger, R., Chin, J. & Smyth, T. Thiamin-catalyzed decarboxylation of pyruvate. Synthesis and reactivity analysis of the central, elusive intermediate, α-lactylthiamin J. Am. Chem. Soc. 103, 884–888 (1981).

    Article  CAS  Google Scholar 

  29. Washabaugh, M. W. & Jencks, W. P. Thiazolium C(2)-proton exchange: general-base catalysis, direct proton transfer, and acid inhibition. Biochemistry 27, 5044–5053 (1988).

    Article  CAS  Google Scholar 

  30. Cheong, C., Varani, G. & Tinoco, I. Jr. Solution structure of an unusually stable RNA hairpin, 5′GGAC(UUCG)GUCC. Nature 346, 680–682 (1990).

    Article  CAS  Google Scholar 

  31. Doudna, J. A. & Cech, T. R. The chemical repertoire of natural ribozymes. Nature 418, 222–228 (2002).

    Article  CAS  Google Scholar 

  32. Chandrasekar, J. & Silverman, S. K. Catalytic DNA with phosphatase activity. Proc. Natl Acad. Sci. USA 110, 5315–5320 (2013).

    Article  CAS  Google Scholar 

  33. Kemp, D. S. & O'Brien, J. T. Base catalysis of thiazolium salt hydrogen exchange and its implications for enzymic thiamine cofactor catalysis. J. Am. Chem. Soc. 92, 2554–2555 (1970).

    Article  CAS  Google Scholar 

  34. Zhang, S. et al. Evidence for dramatic acceleration of a C–H bond ionization rate in thiamin diphosphate enzymes by the protein environment. Biochemistry 44, 2237–2243 (2005).

    Google Scholar 

  35. Frank, R. A., Leeper, F. J. & Luisi, B. F. Structure, mechanism and catalytic duality of thiamin-dependent enzymes. Cell. Mol. Life Sci. 64, 892–905 (2007).

    Article  CAS  Google Scholar 

  36. Kraut, J. & Reed, H. J. The crystal structure of thiamin hydrochloride (vitamin B1). Acta Crystallogr. 15, 747–749 (1962).

    Article  Google Scholar 

  37. Jordan, F., Li, H. & Brown, A. Remarkable stabilization of zwitterionic intermediates may account for a billion-fold rate acceleration by thiamin diphosphate-dependent decarboxylases. Biochemistry 38, 6369–6373 (1999).

    Article  CAS  Google Scholar 

  38. Jordan, F. et al. Dual catalytic apparatus of the thiamin diphosphate coenzyme: acid–base via the 1′,4′-iminopyrimidine tautomer along with its electrophilic role. J. Am. Chem. Soc. 125, 12732–12738 (2003).

    Article  CAS  Google Scholar 

  39. Kern, D. et al. How thiamin diphosphate is activated in enzymes. Science 275, 67–70 (1997).

    Article  CAS  Google Scholar 

  40. Winkler, W. C., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

    Article  CAS  Google Scholar 

  41. Cochrane, J. C. & Strobel, S. A. Riboswitch effectors as protein enzyme cofactors. RNA 14, 993–1002 (2008).

    Article  CAS  Google Scholar 

  42. Thore, S., Leibundgut, M. & Ban, N. Structure of the eukaryotic thiamin pyrophosphate riboswitch with its regulatory ligand. Science 312, 1208–1211 (2006).

    Article  CAS  Google Scholar 

  43. Serganov, A., Polonskaia, A., Phan, A. T., Breaker, R. & Patel, D. J. Structural basis for gene regulation by a thiamin pyrophosphate-sensing riboswitch. Nature 441, 1167–1171 (2006).

    Article  CAS  Google Scholar 

  44. Edwards, T. & Ferré-D'Amaré, A. Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA–small molecule recognition. Structure 14, 1459–1468 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors thank R. N. Young and the members of his group for advice and assistance with organic synthesis, and N. S. Kumar, A. J. Bennet, P. J. Unrau, E. C. Young, A. R. Lewis and H. Chen for their expert and practical advice.

Author information

Authors and Affiliations

Authors

Contributions

P.C. and D.S. conceived and designed the experiments. P.C. performed the experiments. P.C. and D.S. analysed the data. P.C. and D.S. co-wrote the paper.

Corresponding author

Correspondence to Dipankar Sen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cernak, P., Sen, D. A thiamin-utilizing ribozyme decarboxylates a pyruvate-like substrate. Nature Chem 5, 971–977 (2013). https://doi.org/10.1038/nchem.1777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing