Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Water vibrations have strongly mixed intra- and intermolecular character

Abstract

The ability of liquid water to dissipate energy efficiently through ultrafast vibrational relaxation plays a key role in the stabilization of reactive intermediates and the outcome of aqueous chemical reactions. The vibrational couplings that govern energy relaxation in H2O remain difficult to characterize because of the limitations of current methods to visualize inter- and intramolecular motions simultaneously. Using a new sub-70 fs broadband mid-infrared source, we performed two-dimensional infrared, transient absorption and polarization anisotropy spectroscopy of H2O by exciting the OH stretching transition and characterizing the response from 1,350 cm−1 to 4,000 cm−1. These spectra reveal vibrational transitions at all frequencies simultaneous to the excitation, including pronounced cross-peaks to the bend vibration and a continuum of induced absorptions to combination bands that are not present in linear spectra. These observations provide evidence for strong mixing of inter- and intramolecular vibrations in liquid H2O, and illustrate the shortcomings of traditional relaxation models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steady-state and transient infrared spectra of liquid H2O.
Figure 2: Vibrational states and energy levels for molecular and liquid H2O.
Figure 3: Broadband 2D IR and transient absorption spectra of H2O as a function of waiting time between excitation and probing.
Figure 4: Spectral and temporal analysis of ultrafast broadband infrared spectra of H2O.

Similar content being viewed by others

References

  1. Pakoulev, A., Wang, Z. & Dlott, D. D. Vibrational relaxation and spectral evolution following ultrafast OH stretch excitation of water. Chem. Phys. Lett. 371, 594–600 (2003).

    Article  CAS  Google Scholar 

  2. Lindner, J., Cringus, D., Pshenichnikov, M. S. & Vöhringer, P. Anharmonic bend–stretch coupling in neat liquid water. Chem. Phys. 341, 326–335 (2007).

    Article  CAS  Google Scholar 

  3. Lindner, J. et al. Vibrational relaxation of pure liquid water. Chem. Phys. Lett. 421, 329–333 (2006).

    Article  CAS  Google Scholar 

  4. Wang, Z., Pakoulev, A., Pang, Y. & Dlott, D. D. Vibrational substructure in the OH stretching transition of water and HOD. J. Phys. Chem. A 108, 9054–9063 (2004).

    Article  CAS  Google Scholar 

  5. Larsen, O. F. A. & Woutersen, S. Vibrational relaxation of the H2O bending mode in liquid water. J. Chem. Phys. 121, 12143–12145 (2004).

    Article  CAS  Google Scholar 

  6. Cowan, M. L. et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434, 199–202 (2005).

    Article  CAS  Google Scholar 

  7. Huse, N., Ashihara, S., Nibbering, E. T. J. & Elsaesser, T. Ultrafast vibrational relaxation of O–H bending and librational excitations in liquid H2O. Chem. Phys. Lett. 404, 389–393 (2005).

    Article  CAS  Google Scholar 

  8. Deàk, J. C., Rhea, S. T., Iwaki, L. K. & Dlott, D. D. Vibrational energy relaxation and spectral diffusion in water and deuterated water. J. Phys. Chem. A 104, 4866–4875 (2000).

    Article  Google Scholar 

  9. Kraemer, D. et al. Temperature dependence of the two-dimensional infrared spectrum of liquid H2O. Proc. Natl Acad. Sci. USA 105, 437–442 (2008).

    Article  CAS  Google Scholar 

  10. Lock, A. J. & Bakker, H. J. Temperature dependence of vibrational relaxation in liquid H2O. J. Chem. Phys. 117, 1708–1713 (2002).

    Article  CAS  Google Scholar 

  11. Ashihara, S., Huse, N., Espagne, A., Nibbering, E. T. J. & Elsaesser, T. Ultrafast structural dynamics of water induced by dissipation of vibrational energy. J. Phys. Chem. A 111, 743–746 (2007).

    Article  CAS  Google Scholar 

  12. Rey, R. & Hynes, J. T. Tracking energy transfer from excited to accepting modes: application to water bend vibrational relaxation. Phys. Chem. Chem. Phys. 14, 6332–6342 (2012).

    Article  Google Scholar 

  13. Jansen, T. L. C., Auer, B. M., Yang, M. & Skinner, J. L. Two-dimensional infrared spectroscopy and ultrafast anisotropy decay of water. J. Chem. Phys. 132, 224503 (2010).

    Article  CAS  Google Scholar 

  14. Yagasaki, T. & Saito, S. A novel method for analyzing energy relaxation in condensed phases using nonequilibrium molecular dynamics simulations: application to the energy relaxation of intermolecular motions in liquid water. J. Chem. Phys. 134, 184503 (2011).

    Article  Google Scholar 

  15. Auer, B. M. & Skinner, J. L. IR and Raman spectra of liquid water: theory and interpretation. J. Chem. Phys. 128, 224511 (2008).

    Article  CAS  Google Scholar 

  16. Paarmann, A., Hayashi, T., Mukamel, S. & Miller, R. J. D. Nonlinear response of vibrational excitons: simulating the two-dimensional infrared spectrum of liquid water. J. Chem. Phys. 130, 204110 (2009).

    Article  CAS  Google Scholar 

  17. Falvo, C., Palmieri, B. & Mukamel, S. Coherent infrared multidimensional spectra of the OH stretching band in liquid water simulated by direct nonlinear exciton propagation. J. Chem. Phys. 130, 184501 (2009).

    Article  Google Scholar 

  18. Hale, G. M. & Querry, M. R. Optical constants of water in the 200 nm to 200 µm wavelength region. Appl. Opt. 12, 555–63 (1973).

    Article  CAS  Google Scholar 

  19. Woutersen, S. & Bakker, H. J. Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402, 507–509 (1999).

    Article  CAS  Google Scholar 

  20. De Marco, L., Ramasesha, K. & Tokmakoff, A. Experimental evidence for Fermi resonances in isotopically dilute water from ultrafast IR spectroscopy. J. Phys. Chem. B doi:10.1021/jp4034613 (2013).

  21. Libnau, F. O., Kvalheim, O. M., Christy, A. A. & Toft, J. Spectra of water in the near- and mid-infrared region. Vib. Spec. 7, 243–254 (1994).

    Article  CAS  Google Scholar 

  22. Yang, M., Li, F. & Skinner, J. L. Vibrational energy transfer and anisotropy decay in liquid water: is the Förster model valid? J. Chem. Phys. 135, 164505 (2011).

    Article  Google Scholar 

  23. Perakis, F., Widmer, S. & Hamm, P. Two-dimensional infrared spectroscopy of isotope-diluted ice Ih. J. Chem. Phys. 134, 204505 (2011).

    Article  Google Scholar 

  24. Hamm, P. & Stock, G. Vibrational conical intersections as a mechanism of ultrafast vibrational relaxation. Phys. Rev. Lett. 109, 1–5 (2012).

    Article  Google Scholar 

  25. Petersen, P. B. & Tokmakoff, A. Source for ultrafast continuum infrared and terahertz radiation. Opt. Lett. 35, 1962–1964 (2010).

    Article  Google Scholar 

  26. Fecko, C. J., Loparo, J. J. & Tokmakoff, A. Generation of 45 femtosecond pulses at 3 μm with a KNbO optical parametric amplifier. Opt. Commun. 241, 521–528 (2004).

    Article  CAS  Google Scholar 

  27. Deflores, L. P., Nicodemus, R. A. & Tokmakoff, A. Two-dimensional Fourier transform spectroscopy in the pump–probe geometry. Opt. Lett. 32, 2966–2968 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (DE-FG02-99ER14988). L.D.M thanks the Natural Sciences and Engineering Research Council of Canada for a scholarship.

Author information

Authors and Affiliations

Authors

Contributions

A.T., K.R. and L.D.M. conceived and designed experiments. K.R., L.D.M. and A.M. constructed the spectrometer and performed the experiments. A.T., K.R., L.D.M. and A.M. analysed results. K.R. and A.T. co-wrote the paper.

Corresponding author

Correspondence to Andrei Tokmakoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramasesha, K., De Marco, L., Mandal, A. et al. Water vibrations have strongly mixed intra- and intermolecular character. Nature Chem 5, 935–940 (2013). https://doi.org/10.1038/nchem.1757

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1757

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing