Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A strategy for the diversity-oriented synthesis of macrocyclic scaffolds using multidimensional coupling

Abstract

A prerequisite for successful screening campaigns in drug discovery or chemical genetics is the availability of structurally and thus functionally diverse compound libraries. Diversity-oriented synthesis (DOS) provides strategies for the generation of such libraries, of which the build/couple/pair (B/C/P) algorithm is the most frequently used. We have developed an advanced B/C/P strategy that incorporates multidimensional coupling. In this approach, structural diversity is not only defined by the nature of the building blocks employed, but also by the linking motif installed during the coupling reaction. We applied this step-efficient approach in a DOS of a library that consisted of 73 macrocyclic compounds based around 59 discrete scaffolds. The macrocycles prepared cover a broad range of different molecular shapes, as illustrated by principal moment-of-inertia analysis. This demonstrates the capability of the advanced B/C/P strategy using multidimensional coupling for the preparation of structurally diverse compound collections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the couple phase in a classical B/C/P strategy with the multidimensional coupling phase introduced in our work.
Figure 2: Outline of the synthetic strategy used for the construction of the macrocyclic DOS library.
Figure 3: Multidimensional coupling exemplified for azido building block 3.
Figure 4: Illustrative macrocyclizations of the pair phase.
Figure 5: Illustrative members of the DOS library.
Figure 6: Principle moment of inertia plot.

Similar content being viewed by others

References

  1. Spring, D. R. Diversity-oriented synthesis; a challenge for synthetic chemists. Org. Biomol. Chem. 1, 3867–3870 (2003).

    Article  CAS  Google Scholar 

  2. Burke, M. D. & Schreiber, S. L. A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed. 43, 46–58 (2004).

    Article  Google Scholar 

  3. Galloway, W. R. J. D., Isidro-Llobet, A. & Spring, D. R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nature Commun. 1, 80 (2010).

    Article  Google Scholar 

  4. Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nature Rev. Drug Discov. 10, 188–195 (2011).

    Article  CAS  Google Scholar 

  5. Frearson, J. A. & Collie, I. T. HTS and hit finding in academia – from chemical genomics to drug discovery. Drug Discov. Today 14, 1150–1158 (2009).

    Article  Google Scholar 

  6. Dandapani, S. & Marcaurelle, L. A. Grand challenge commentary: accessing new chemical space for ‘undruggable' targets. Nature Chem. Biol. 6, 861–863 (2010).

    Article  CAS  Google Scholar 

  7. O'Connor, C. J., Laraia, L. & Spring, D. R. Chemical genetics. Chem. Soc. Rev. 40, 4332–4345 (2011).

    Article  CAS  Google Scholar 

  8. O'Connor, C. J., Beckmann, H. S. G. & Spring, D. R. Diversity-oriented synthesis: producing chemical tools for dissecting biology. Chem. Soc. Rev. 41, 4444–4456 (2012).

    Article  CAS  Google Scholar 

  9. Tan, D. S. Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nature Chem. Biol. 1, 74–84 (2005).

    Article  CAS  Google Scholar 

  10. Oh, S. & Park, S. B. A design strategy for drug-like polyheterocycles with privileged substructures for discovery of specific small-molecule modulators. Chem. Commun. 47, 12754–12761 (2011).

    Article  CAS  Google Scholar 

  11. Wetzel, S., Bon, R. S., Kumar, K. & Waldmann, H. Biology-oriented synthesis. Angew. Chem. Int. Ed. 50, 10800–10826 (2011).

    Article  CAS  Google Scholar 

  12. Brown, L. E. et al. Discovery of new antimalarial chemotypes through chemical methodology and library development. Proc. Natl Acad. Sci. USA 108, 6775–6780 (2011).

    Article  CAS  Google Scholar 

  13. Burke, M. D., Berger, E. M. & Schreiber, S. L. Generating diverse skeletons of small molecules combinatorially. Science 302, 613–618 (2003).

    Article  CAS  Google Scholar 

  14. Clemons, P. A. et al. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc. Natl Acad. Sci. USA 107, 18787–18792 (2010).

    Article  CAS  Google Scholar 

  15. Huigens R. W. III, et al. A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nature Chem. 5, 195–202 (2013).

    Article  CAS  Google Scholar 

  16. Morton, D., Leach, S., Cordier, C., Warriner, S. & Nelson, A. Synthesis of natural-product-like molecules with over eighty distinct scaffolds. Angew. Chem. Int. Ed. 48, 104–109 (2009).

    Article  CAS  Google Scholar 

  17. Thomas, G. L. et al. Anti-MRSA agent discovery using diversity-oriented synthesis. Angew. Chem. Int. Ed. 47, 2808–2812 (2008).

    Article  CAS  Google Scholar 

  18. Dow, M., Fisher, M., James, T., Marchetti, F. & Nelson, A. Towards the systematic exploration of chemical space. Org. Biomol. Chem. 10, 17–28 (2012).

    Article  CAS  Google Scholar 

  19. Sauer, W. H. B. & Schwarz, M. K. Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J. Chem. Inf. Comput. Sci. 43, 987–1003 (2003).

    Article  CAS  Google Scholar 

  20. Nielsen, T. E. & Schreiber, S. L. Towards the optimal screening collection: a synthesis strategy. Angew. Chem. Int. Ed. 47, 48–56 (2008).

    Article  CAS  Google Scholar 

  21. Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery – an underexploited structural class. Nature Rev. Drug Discov. 7, 608–624 (2008).

    Article  CAS  Google Scholar 

  22. Marsault, E. & Peterson, M. L. Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J. Med. Chem. 54, 1961–2004 (2011).

    Article  CAS  Google Scholar 

  23. Cummings, M. D. et al. Structure-based macrocyclization yields hepatitis C virus NS5B inhibitors with improved binding affinities and pharmacokinetic properties. Angew. Chem. Int. Ed. 51, 4637–4640 (2012).

    Article  CAS  Google Scholar 

  24. Terrett, N. K. Methods for the synthesis of macrocycle libraries for drug discovery. Drug Discov. Today Technol. 7, e97–e104 (2010).

    Article  CAS  Google Scholar 

  25. White, C. J. & Yudin, A. K. Contemporary strategies for peptide macrocyclization. Nature Chem. 3, 509–524 (2011).

    Article  CAS  Google Scholar 

  26. Yoo, B., Shin, S. B. Y., Huang, M. L. & Kirshenbaum, K. Peptoid macrocycles: making the rounds with peptidomimetic oligomers. Chem. Eur. J. 16, 5528–5537 (2010).

    Article  CAS  Google Scholar 

  27. Madsen, C. M. & Clausen, M. H. Biologically active macrocyclic compounds – from natural products to diversity-oriented synthesis. Eur. J. Org. Chem. 2011, 3107–3115 (2011).

    Article  Google Scholar 

  28. Bauer, R. A., Wenderski, T. A. & Tan, D. S. Biomimetic diversity-oriented synthesis of benzannulated medium rings via ring expansion. Nature Chem. Biol. 9, 21–29 (2013).

    Article  CAS  Google Scholar 

  29. Kopp, F., Stratton, C. F., Akella, L. B. & Tan, D. S. A diversity-oriented synthesis approach to macrocycles via oxidative ring expansion. Nature Chem. Biol. 8, 358–365 (2012).

    Article  CAS  Google Scholar 

  30. Comer, E. et al. Fragment-based domain shuffling approach for the synthesis of pyran-based macrocycles. Proc. Natl Acad. Sci. USA 108, 6751–6756 (2011).

    Article  CAS  Google Scholar 

  31. O'Connell, K. M. G. et al. A two-directional strategy for the diversity-oriented synthesis of macrocyclic scaffolds. Org. Biomol. Chem. 10, 7545–7551 (2012).

    Article  CAS  Google Scholar 

  32. Marcaurelle, L. A. et al. An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings: discovery of macrocyclic histone deacetylase inhibitors. J. Am. Chem. Soc. 132, 16962–16976 (2010).

    Article  Google Scholar 

  33. Isidro-Llobet, A. et al. Diversity-oriented synthesis of macrocyclic peptidomimetics. Proc. Natl Acad. Sci. USA 108, 6793–6798 (2011).

    Article  CAS  Google Scholar 

  34. Palacios, F., Alonso, C., Aparicio, D., Rubiales, G. & de los Santos, J. M. The aza-Wittig reaction: an efficient tool for the construction of carbon–nitrogen double bonds. Tetrahedron 63, 523–575 (2007).

    Article  CAS  Google Scholar 

  35. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  36. Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalysed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  Google Scholar 

  37. Zhang, L. et al. Ruthenium-catalysed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc. 127, 15998–15999 (2005).

    Article  CAS  Google Scholar 

  38. Kelly, A. R. et al. Accessing skeletal diversity using catalyst control: formation of n and n + 1 macrocyclic triazole rings. Org. Lett. 11, 2257–2260 (2009).

    Article  CAS  Google Scholar 

  39. Hansen, E. C. & Lee, D. Ring closing enyne metathesis: control over mode selectivity and stereoselectivity. J. Am. Chem. Soc. 126, 15074–15080 (2004).

    Article  CAS  Google Scholar 

  40. Zhang, W. Fluorous linker-facilitated chemical synthesis. Chem. Rev. 109, 749–795 (2009).

    Article  CAS  Google Scholar 

  41. Zhang, W. & Curran, D. P. Synthetic applications of fluorous solid-phase extraction (F-SPE). Tetrahedron 62, 11837–11865 (2006).

    Article  CAS  Google Scholar 

  42. Ménand, M. & Jabin, I. Synthesis of the first calix[6]crypturea via a versatile tris-azide precursor. Org. Lett. 11, 673–676 (2009).

    Article  Google Scholar 

  43. Yagodkin, A., Löschcke, K., Weisell, J. & Azhayev, A. Straightforward carbamoylation of nucleophilic compounds employing organic azides, phosphines, and aqueous trialkylammonium hydrogen carbonate. Tetrahedron 66, 2210–2221 (2010).

    Article  CAS  Google Scholar 

  44. Zhang, L-F., Chen, L., Lee, T-C. & Ng, S-C. A facile route into 6A-mono-ω-alkenylcarbamido-6A-deoxy-perfunctionalised cyclodextrin: key intermediate for further reactive functionalisations. Tetrahedron: Asymmetry 10, 4107–4113 (1999).

    Article  CAS  Google Scholar 

  45. Sallas, F. et al. Synthesis and study of new β-cyclodextrin ‘dimers’ having a metal coordination center and carboxamide or urea linkers. Helv. Chim. Acta 81, 632–645 (1998).

    Article  CAS  Google Scholar 

  46. Loncaric, C., Manabe, K. & Kobayashi, S. AgOTf-catalyzed aza-Diels–Alder reactions of Danishefsky's diene with imines in water. Adv. Synth. Catal. 345, 475–477 (2003).

    Article  CAS  Google Scholar 

  47. Bauer, R. A., Wurst, J. M. & Tan, D. S. Expanding the range of ‘druggable' targets with natural product-based libraries: an academic perspective. Curr. Opin. Chem. Biol. 14, 308–314 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union, Engineering and Physical Sciences Research Council, Biotechnology and Biological Sciences Research Council, Medical Research Council, Frances and Augustus Newman Foundation, Wellcome Trust and Isaac Newton Trust. H.S.G.B. acknowledges a fellowship within the Postdoctoral Programme of the German Academic Exchange Service. F.N. thanks the Gates Cambridge Trust and acknowledges a Krishnan-Ang Studentship. Y.S.T. thanks the Agency for Science, Technology and Research and D.W. thanks the German Research Foundation for a postdoctoral fellowship (WI 4198/1-1).

Author information

Authors and Affiliations

Authors

Contributions

H.S.G.B., D.W. and D.R.S. conceived and supervised the project. H.S.G.B., F.N., C.E.H., H.J. and D.W. planned, performed and evaluated the experiments. Y.S.T. performed the molecular informatics studies. H.S.G.B., F.N., D.W. and D.R.S. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to David R. Spring.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 15736 kb)

Supplementary information

Supplementary information (CIF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckmann, H., Nie, F., Hagerman, C. et al. A strategy for the diversity-oriented synthesis of macrocyclic scaffolds using multidimensional coupling. Nature Chem 5, 861–867 (2013). https://doi.org/10.1038/nchem.1729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing