Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A ‘clusters-in-liquid’ method for calculating infrared spectra identifies the proton-transfer mode in acidic aqueous solutions

Abstract

In liquid water the transfer of an excess proton between two water molecules occurs through the Zundel cation, H2O···H+···OH2. The proton-transfer mode is the asymmetric stretch of the central O···H+···O moiety, but there is no consensus on its identification in the infrared spectra of acidic aqueous solutions. Also, in experiments with protonated gas-phase water clusters, its position shifts with cluster size, which makes its relationship with solution spectra unclear. Here we introduce a ‘clusters-in-liquid’ approach for calculating the infrared spectrum from any set of charges, even single protons. We apply this procedure to multistate empirical valence-bond trajectories of protonated liquid water and to ab initio molecular dynamics of the protonated water dimer and hexamer in the gas phase. The calculated proton-transfer mode is manifested in both systems as a peak near 1,740 cm−1, in quantitative agreement with a band of similar frequency in the experimental infrared spectrum of protonated water clusters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The infrared spectra of protonated gas-phase water clusters, H+(H2O)n.
Figure 2: Calculated ‘clusters-in-liquid’ infrared spectra of H+(H2O)n clusters embedded in room-temperature liquid water.
Figure 3: Our strategy for dividing a trajectory of protonated water into its Eigen and Zundel parts.
Figure 4: Clusters-in-liquid infrared spectra for the Eigen and Zundel clusters in protonated liquid water, showing the peaks assigned to the various classes of protons.
Figure 5: Comparison between the calculated AIMD infrared spectra of Zundel-like gas-phase protonated water clusters (green) and experiments (black).

Similar content being viewed by others

References

  1. Wraight, C. A. Chance and design – proton transfer in water, channels and bioenergetic proteins. Biochim. Biophys. Acta 1757, 886–912 (2006).

    Article  CAS  Google Scholar 

  2. Kreuer, K-D., Paddison, S. J., Spohr, E. & Schuster, M. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004).

    Article  CAS  Google Scholar 

  3. Agmon, N. & Gutman, M. Proton solvation and proton mobility. Isr. J. Chem. 39 (Special Issue) (1999).

  4. de Grotthuss, C. J. T. Sur la décomposition de l'eau et de corps qu'elle tient en dissolution à l'aide de l’électricité galvanique. Ann. Chim. LVIII, 54–74 (1806).

    Google Scholar 

  5. Cukierman, S. Et tu, Grotthuss! and other unfinished stories. Biochim. Biophys. Acta 1757, 876–885 (2006).

    Article  CAS  Google Scholar 

  6. Hückel, E. Theory of the mobilities of the H and OH ions in aqueous solutions. Z. Electrochem. 34, 546–562 (1928).

    Google Scholar 

  7. Wicke, E., Eigen, M. & Ackermann, T. Über den Zustand des Protons (Hydroniumions) in wäßriger Lösung. Z. Phys. Chem. 1, 340–364 (1954).

    Article  Google Scholar 

  8. Markovitch, O. & Agmon, N. Structure and energetics of the hydronium hydration shells. J. Phys. Chem. A 111, 2253–2256 (2007).

    Article  CAS  Google Scholar 

  9. Zundel, G. Hydration structure and intermolecular interaction in polyelectrolytes. Ang. Chem. Int. Ed. Engl. 8, 499–509 (1969).

    Article  CAS  Google Scholar 

  10. Zundel, G. in The Hydrogen Bond, Recent Developments in Theory and Experiments (eds Schuster, P., Zundel, G. & Sandorfy, C.) 687–766 (North Holland, 1976).

    Google Scholar 

  11. Agmon, N., Goldberg, S. Y. & Huppert, D. Salt effect on transient proton transfer to solvent and microscopic proton mobility. J. Mol. Liq. 64, 161–195 (1995).

    Article  CAS  Google Scholar 

  12. Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).

    Article  CAS  Google Scholar 

  13. Markovitch, O. et al. Special pair dance and partner selection: elementary steps in proton transport in liquid water. J. Phys. Chem. B 112, 9456–9466 (2008).

    Article  CAS  Google Scholar 

  14. Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999).

    Article  CAS  Google Scholar 

  15. Lapid, H., Agmon, N., Petersen, M. K. & Voth, G. A. A bond-order analysis of the mechanism for hydrated proton mobility in liquid water. J. Chem. Phys. 122, 014506 (2005).

    Article  Google Scholar 

  16. Tielrooij, K. J., Timmer, R. L. A., Bakker, H. J. & Bonn, M. Structure dynamics of the proton in liquid water probed with terahertz time-domain spectroscopy. Phys. Rev. Lett. 102, 198303 (2009).

    Article  CAS  Google Scholar 

  17. Ackermann, T. Das Absorptionsspektrum wäßinger Säure- und Alkali-hydroxydlösungen im Wellenlängenbereich von 2,5 bis 9µ. Z. Phys. Chem. 27, 253–276 (1961).

    Article  CAS  Google Scholar 

  18. Falk, M. & Giguère, P. A. Infrared spectrum of the H3O+ ion in aqueous solutions. Can. J. Chem. 35, 1195–1204 (1957).

    Article  CAS  Google Scholar 

  19. Rhine, P., Williams, D., Hale, G. M. & Querry, M. R. Infrared optical constants of aqueous solutions of electrolytes. Acids and bases. J. Phys. Chem. 78, 1405–1410 (1974).

    Article  CAS  Google Scholar 

  20. Downing, H. D. & Williams, D. Infrared spectra of strong acids and bases. J. Phys. Chem. 80, 1640–1641 (1976).

    Article  CAS  Google Scholar 

  21. Librovich, N. B., Sakun, V. P. & Sokolov, N. D. H+ and OH ions in aqueous solutions. Vibrational spectra of hydrates. Chem. Phys. 39, 351–366 (1979).

    Article  CAS  Google Scholar 

  22. Śmiechowski, M. & Stangret, J. ATR FT-IR H2O spectra of acidic aqueous solutions. Insights about proton hydration. J. Mol. Struct. 878, 104–115 (2008).

    Article  Google Scholar 

  23. Stoyanov, E. S., Stoyanova, I. V. & Reed, C. A. The structure of the hydrogen ion (Haq+) in water. J. Am. Chem. Soc. 132, 1484–1485 (2010).

    Article  CAS  Google Scholar 

  24. Kim, J., Schmitt, U. W., Gruetzmacher, J. A., Voth, G. A. & Scherer, N. E. The vibrational spectrum of the hydrated proton: Comparison of experiment, simulation, and normal mode analysis. J. Chem. Phys. 116, 737–746 (2002).

    Article  CAS  Google Scholar 

  25. Vuilleumier, R. & Borgis, D. Transport and spectroscopy of the hydrated proton: a molecular dynamics study. J. Chem. Phys. 111, 4251–4266 (1999).

    Article  CAS  Google Scholar 

  26. Iftimie, R. & Tuckerman, M. E. Decomposing total IR spectra of aqueous systems into solute and solvent contributions: a computational approach using maximally localized Wannier orbitals. J. Chem. Phys. 122, 214508 (2005).

    Article  Google Scholar 

  27. Iftimie, R. & Tuckerman, M. E. The molecular origin of the continuous infrared absorption in aqueous solutions of acids: a computational approach. Ang. Chem. Intl Ed. 45, 1144–1147 (2006).

    Article  CAS  Google Scholar 

  28. Xu, J., Zhang, Y. & Voth, G. A. Infrared spectrum of the hydrated proton in water. J. Phys. Chem. Lett. 2, 81–86 (2011).

    Article  CAS  Google Scholar 

  29. Asmis, K. R. et al. Gas-phase infrared spectrum of the protonated water dimer. Science 299, 1375–1377 (2003).

    Article  CAS  Google Scholar 

  30. Headrick, J. M. et al. Spectral signatures of hydrated proton vibrations in water clusters. Science 308, 1765–1769 (2005).

    Article  CAS  Google Scholar 

  31. Olesen, S. G., Guasco, T. L., Roscioli, J. R. & Johnson, M. A. Tuning the intermolecular proton bond in the H5O2+ ‘Zundel ion’ scaffold. Chem. Phys. Lett. 509, 89–95 (2011).

    Article  CAS  Google Scholar 

  32. Vendrell, O., Gatti, F. & Meyer, H-D. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics. J. Chem. Phys. 127, 184303 (2007).

    Article  Google Scholar 

  33. Niedner-Schatteburg, G. Infrared spectroscopy and ab initio theory of isolated H5O2+: from buckets of water to the Schrödinger equation and back. Ang. Chem. Intl Ed. 47, 1008–1011 (2008).

    Article  CAS  Google Scholar 

  34. Agmon, N. Structure of concentrated HCl solutions. J. Phys. Chem. A 102, 192–199 (1998).

    Article  CAS  Google Scholar 

  35. Agostini, F., Vuilleumier, R. & Ciccotti, G. Infrared spectroscopy of small protonated water clusters at room temperature: an effective modes analysis. J. Chem. Phys. 134, 084302 (2011).

    Article  Google Scholar 

  36. Day, T. J. F., Soudackov, A. V., Čuma, M., Schmitt, U. W. & Voth, G. A. A second generation multistate empirical valence bond model for proton transport in aqueous systems. J. Chem. Phys. 117, 5839–5849 (2002).

    Article  CAS  Google Scholar 

  37. Wu, Y., Chen, H., Wang, F., Paesani, F. & Voth, G. A. An improved multistate empirical valence bond model for aqueous proton solvation and transport. J. Phys. Chem. B 112, 467–482 (2008); erratum: 112, 7146 (2008).

    Article  CAS  Google Scholar 

  38. Wu, Y., Tepper, H. L. & Voth, G. A. Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Phys. 124, 024503 (2006).

    Article  Google Scholar 

  39. Haese, N. N. & Oka, T. Observation of the ν2 (1 ← 0+) inversion mode band in H3O+ by high resolution infrared spectroscopy. J. Chem. Phys. 80, 572–573 (1984).

    Article  CAS  Google Scholar 

  40. Nakamoto, K., Margoshes, M. & Rundle, R. E. Stretching frequencies as a function of distances in hydrogen bonds. J. Am. Chem. Soc. 77, 6480–6486 (1955).

    Article  CAS  Google Scholar 

  41. Swanson, J. M. J. & Simons, J. Role of charge transfer in the structure and dynamics of the hydrated proton. J. Phys. Chem. B 113, 5149–5161 (2009).

    Article  CAS  Google Scholar 

  42. Yu, H. & Cui, Q. The vibrational spectra of protonated water clusters: a benchmark for self-consistent-charge density-functional tight binding. J. Chem. Phys. 127, 234504 (2007).

    Article  Google Scholar 

  43. Smith, W. & Forester, T. R. DL_POLY, version 2.13. CCLRC Daresbury Laboratory (Daresbury, 1999).

  44. CP2K version 2.3 (CP2K Development Group, http://www.cp2k.org/).

  45. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to G. A. Voth for a copy of the MS-EVB3 program and to M. A. Johnson and M. Śmiechowski for experimental data. This research was supported by the US–Israel Binational Science Foundation, grant numbers 2006067 and 2010250. The Fritz Haber Center is supported by the Minerva Gesellschaft für die Forschung, Munich.

Author information

Authors and Affiliations

Authors

Contributions

W.K. performed the calculations, prepared the figures and wrote a first draft of the manuscript. N.A. designed the research, interpreted the data and wrote the article.

Corresponding author

Correspondence to Noam Agmon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1875 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulig, W., Agmon, N. A ‘clusters-in-liquid’ method for calculating infrared spectra identifies the proton-transfer mode in acidic aqueous solutions. Nature Chem 5, 29–35 (2013). https://doi.org/10.1038/nchem.1503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing