Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions

Abstract

The viability of a hydrogen economy depends on the design of efficient catalytic systems based on earth-abundant elements. Innovative breakthroughs for hydrogen evolution based on molecular tetraimine cobalt compounds have appeared in the past decade. Here we show that such a diimine–dioxime cobalt catalyst can be grafted to the surface of a carbon nanotube electrode. The resulting electrocatalytic cathode material mediates H2 generation (55,000 turnovers in seven hours) from fully aqueous solutions at low-to-medium overpotentials. This material is remarkably stable, which allows extensive cycling with preservation of the grafted molecular complex, as shown by electrochemical studies, X-ray photoelectron spectroscopy and scanning electron microscopy. This clearly indicates that grafting provides an increased stability to these cobalt catalysts, and suggests the possible application of these materials in the development of technological devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic methodology for the preparation of the CNT/Co material.
Figure 2: Electrochemical characterization.
Figure 3: XPS analysis.
Figure 4: Electrocatalytic hydrogen evolution.

Similar content being viewed by others

References

  1. Armaroli, N. & Balzani, V. The future of energy supply: challenges and opportunities. Angew. Chem. Int. Ed. 46, 52–66 (2007).

    Article  CAS  Google Scholar 

  2. Armaroli, N. & Balzani, V. The hydrogen issue. ChemSusChem 4, 21–36 (2011).

    Article  CAS  Google Scholar 

  3. Crabtree, G. W. & Dresselhaus, M. S. The hydrogen fuel alternative. Mater. Res. Soc. Bull. 33, 421–428 (2008).

    Article  CAS  Google Scholar 

  4. Gordon, R. B., Bertram, M. & Graedel, T. E. Metal stocks and sustainability. Proc. Natl Acad. Sci. USA 103, 1209–1214 (2006).

    Article  CAS  Google Scholar 

  5. Artero, V., Chavarot-Kerlidou, M. & Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 50, 7238–7266 (2011).

    Article  CAS  Google Scholar 

  6. Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009).

    Article  CAS  Google Scholar 

  7. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  Google Scholar 

  8. Jiao, F. & Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 48, 1841–1844 (2009).

    Article  CAS  Google Scholar 

  9. Yin, Q. S. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    Article  CAS  Google Scholar 

  10. Risch, M. et al. Cobalt-oxo core of a water-oxidizing catalyst film. J. Am. Chem. Soc. 131, 6936–6937 (2009).

    Article  CAS  Google Scholar 

  11. Dau, H. et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761 (2010).

    Article  CAS  Google Scholar 

  12. Baffert, C., Artero, V. & Fontecave, M. Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroboryl bis(dimethyl glyoximato)cobalt(II) complexes in organic media. Inorg. Chem. 46, 1817–1824 (2007).

    Article  CAS  Google Scholar 

  13. Hu, X. L., Cossairt, B. M., Brunschwig, B. S., Lewis, N. S. & Peters, J. C. Electrocatalytic hydrogen evolution by cobalt difluoroboryl–diglyoximate complexes. Chem. Commun. 4723–4725 (2005).

  14. Razavet, M., Artero, V. & Fontecave, M. Proton electroreduction catalyzed by cobaloximes: functional models for hydrogenases. Inorg. Chem. 44, 4786–4795 (2005).

    Article  CAS  Google Scholar 

  15. Hu, X., Brunschwig, B. S. & Peters, J. C. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 129, 8988–8998 (2007).

    Article  CAS  Google Scholar 

  16. Fourmond, V., Jacques, P. A., Fontecave, M. & Artero, V. H2 evolution and molecular electrocatalysts: determination of overpotentials and effect of homoconjugation. Inorg. Chem. 49, 10338–10347 (2010).

    Article  CAS  Google Scholar 

  17. Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

    Article  CAS  Google Scholar 

  18. Le Goff, A. et al. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009).

    Article  CAS  Google Scholar 

  19. Tran, P. D. et al. Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew. Chem. Int. Ed. 50, 1371–1374 (2011).

    Article  CAS  Google Scholar 

  20. Toma, F. M. et al. Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nature Chem. 2, 826–831 (2010).

    Article  CAS  Google Scholar 

  21. Li, F. et al. Highly efficient oxidation of water by a molecular catalyst immobilized on carbon nanotubes. Angew. Chem. Int. Ed. 50, 12276–12279 (2011).

    Article  CAS  Google Scholar 

  22. DeKrafft, K. E. et al. Electrochemical water oxidation with carbon-grafted iridium complexes. ACS Appl. Mater. Interfaces 4, 608–613 (2012).

    Article  CAS  Google Scholar 

  23. Le Goff, A. et al. Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and pi-stacking interactions and their relevance to glucose bio-sensing. J. Electroanal. Chem. 641, 57–63 (2010).

    Article  CAS  Google Scholar 

  24. Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006).

    Article  CAS  Google Scholar 

  25. Sgobba, V. & Guldi, D. M. Carbon nanotubes – electronic/electrochemical properties and application for nanoelectronics and photonics. Chem. Soc. Rev. 38, 165–184 (2009).

    Article  CAS  Google Scholar 

  26. Clave, G. & Campidelli, S. Efficient covalent functionalisation of carbon nanotubes: the use of 'click chemistry'. Chem. Sci. 2, 1887–1896 (2011).

    Article  CAS  Google Scholar 

  27. Pinson, J. & Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 34, 429–439 (2005).

    Article  CAS  Google Scholar 

  28. Jacques, P-A., Artero, V., Pécaut, J. & Fontecave, M. Cobalt and nickel diimine–dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages. Proc. Natl Acad. Sci. USA 106, 20627–20632 (2009).

    Article  CAS  Google Scholar 

  29. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  30. Sletten, E. M. & Bertozzi, C. R. From mechanism to mouse: a tale of two bioorthogonal reactions. Acc. Chem. Res. 44, 666–676 (2011).

    Article  CAS  Google Scholar 

  31. Seeber, R., Parker, W. O., Marzilli, P. A. & Marzilli, L. G. Electrochemical synthesis of Costa-type cobalt complexes. Organometallics 8, 2377–2381 (1989).

    Article  CAS  Google Scholar 

  32. Palacin, S. et al. Efficient functionalization of carbon nanotubes with porphyrin dendrons via click chemistry. J. Am. Chem. Soc. 131, 15394–15402 (2009).

    Article  CAS  Google Scholar 

  33. Berben, L. A. & Peters, J. C. Hydrogen evolution by cobalt tetraimine catalysts adsorbed on electrode surfaces. Chem. Commun. 46, 398–400 (2010).

    Article  CAS  Google Scholar 

  34. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  35. McKone, J. R. et al. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4, 3573–3583 (2011).

    Article  CAS  Google Scholar 

  36. Chen, W-F. et al. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem. Int. Ed., 51, 6131–6135 (2012).

    Article  CAS  Google Scholar 

  37. Hulley, E. B., Wolczanski, P. T. & Lobkovsky, E. B. Carbon–carbon bond formation from azaallyl and imine couplings about metal–metal bonds. J. Am. Chem. Soc. 133, 18058–18061 (2011).

    Article  CAS  Google Scholar 

  38. Cobo, S. et al. A Janus cobalt-based catalytic material for electro-splitting of water. Nature Mater. 11, 802–807 (2012).

    Article  CAS  Google Scholar 

  39. Blakemore, J. D. et al. Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors. Chem. Sci. 2, 94–98 (2011).

    Article  CAS  Google Scholar 

  40. Widegren, J. A. & Finke, R. G. A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal–particle heterogeneous catalysis under reducing conditions. J. Mol. Catal. A 198, 317–341 (2003).

    Article  CAS  Google Scholar 

  41. Stracke, J. J. & Finke, R. G. Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10−: Identification of heterogeneous CoOx as the dominant catalyst. J. Am. Chem. Soc. 133, 14872–14875 (2011).

    Article  CAS  Google Scholar 

  42. Anxolabehere-Mallart, E. et al. Boron-capped tris(glyoximato) cobalt clathrochelate as a precursor for the electrodeposition of nanoparticles catalyzing H2 evolution in water. J. Am. Chem. Soc. 134, 6104–6107 (2012).

    Article  CAS  Google Scholar 

  43. Hocking, R. K. et al. Water-oxidation catalysis by manganese in a geochemical-like cycle. Nature Chem. 3, 461–466 (2011).

    Article  CAS  Google Scholar 

  44. Wiechen, M., Berends, H. M. & Kurz, P. Water oxidation catalysed by manganese compounds: from complexes to ‘biomimetic rocks’. Dalton Trans. 41, 21–31 (2012).

    Article  CAS  Google Scholar 

  45. Schley, N. D. et al. Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. J. Am. Chem. Soc. 133, 10473–10481 (2011).

    Article  CAS  Google Scholar 

  46. Muckerman, J. T. & Fujita, E. Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime. Chem. Commun. 47, 12456–12458 (2011).

    Article  CAS  Google Scholar 

  47. Solis, B. H. & Hammes-Schiffer, S. Theoretical analysis of mechanistic pathways for hydrogen evolution catalyzed by cobaloximes. Inorg. Chem. 50, 11252–11262 (2011).

    Article  CAS  Google Scholar 

  48. Griveau, S., Mercier, D., Vautrin-Ul, C. & Chaussé, A. Electrochemical grafting by reduction of 4-amino-ethylbenzenediazonium salt: application to the immobilization of (bio)molecules. Electrochem. Commun. 9, 2768–2773 (2007).

    Article  CAS  Google Scholar 

  49. Morozan, A. et al. Metal-free nitrogen-containing carbon nanotubes prepared from triazole and tetrazole derivatives show high electrocatalytic activity towards the oxygen reduction reaction in alkaline media. ChemSusChem 5, 647–651 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the French National Research Agency (ANR) through Grant 07-BLAN-0298-01, Labex program (ARCANE, 11-LABX-003) and Carnot funding (Institut Leti). The authors thank the New Technologies for Energy Program of CEA (project pH2oton) and P. Jegou for XPS measurements.

Author information

Authors and Affiliations

Authors

Contributions

V.A., B.J., S.P. and M.F. designed the research, E.S.A., P-A.J., P.D.T., A.L., M.C-K., M.M. and V.A. performed the research, J.P. performed the X-ray crystallographic studies and V.A. and E.S.A. co-wrote the paper.

Corresponding author

Correspondence to Vincent Artero.

Ethics declarations

Competing interests

Patent applications (EP-08 290 988.8 and E.N.10 53019) have been filed for the preparation of azide-appended diimine–dioxime complexes such as 2 and their grafting onto electrode materials.

Supplementary information

Supplementary information

Supplementary information (PDF 1804 kb)

Supplementary information

Crystallographic data for compound 2. (CIF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreiadis, E., Jacques, PA., Tran, P. et al. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions. Nature Chem 5, 48–53 (2013). https://doi.org/10.1038/nchem.1481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1481

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing