Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A switching cascade of hydrazone-based rotary switches through coordination-coupled proton relays

Abstract

Imidazole, a subunit of histidine, plays a crucial role in proton-relay processes that are important for various biological activities, such as metal efflux, viral replication and photosynthesis. We show here how an imidazolyl ring incorporated into a rotary switch based on a hydrazone enables a switching cascade that involves proton relay between two different switches. The switching process starts with a single input, zinc(II), that initiates an E/Z isomerization in the hydrazone system through a coordination-coupled proton transfer. The resulting imidazolium ring is unusually acidic and, through proton relay, activates the E/Z isomerization of a non-coordinating pyridine-containing hydrazone switch. We hypothesize that the reduction in the acid dissociation constant of the imidazolium ring results from a combination of electrostatic and conformational effects, the study of which might help elucidate the proton-coupled electron-transfer mechanism in photosynthetic bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulating two switches using a single input.
Figure 2: Synthesis of QIH-Me.
Figure 3: Oak Ridge thermal ellipsoid plots (50% probability ellipsoids) of the X-ray crystal structures of the hydrazone-based switches.
Figure 4: Spectroscopic studies of the binding between zinc(II) and QIH-Me (1.0 × 10−5 M, CH3CN, 294 K).
Figure 5: The 1H NMR spectra (500 MHz, CD3CN, 294 K) used in confirming the CCD-initiated proton transfer that leads to the successive activation of two switches.
Figure 6: Superimposition of the optimized density functional theory (B3LYP/LACV3P**++) structures of QIH-Me(Z-H+) (blue) and Zn(QIH-Me(Z-H+)) (bronze).

Similar content being viewed by others

References

  1. Williams, R. J. P. Proton circuits in biological energy interconversions. Annu. Rev. Biophys. Biophys. Chem. 17, 71–97 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Pinto, L. H. et al. A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity. Proc. Natl Acad. Sci. USA 94, 6183–6188 (1997).

    Google Scholar 

  3. Takeda, M., Pekosz, A., Shuck, K., Pinto, L. H. & Lamb, R. A. Influenza A virus M2 ion channel activity is essential for efficient replication in tissue culture. J. Virol. 76, 1391–1399 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hu, F., Luo, W. & Hong, M. Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR. Science 330, 505–508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feher, G., Allen, J. P., Okamura, M. Y. & Rees, D. C. Structure and function of bacterial photosynthetic reaction centres. Nature 339, 111–116 (1989).

    Article  CAS  Google Scholar 

  6. Paddock, M., Graige, M., Feher, G. & Okamura, M. Identification of the proton pathway in bacterial reaction centers: inhibition of proton transfer by binding of Zn2+ or Cd2+. Proc. Natl Acad. Sci. USA 96, 6183–6188 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Utschig, L., Poluektov, O., Tiede, D. & Thurnauer, M. EPR investigation of Cu2+-substituted photosynthetic bacterial reaction centers: evidence for histidine ligation at the surface metal site. Biochemistry 39, 2961–2969 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Gerencsér, L. & Maróti, P. Retardation of proton transfer caused by binding of the transition metal ion to the bacterial reaction center is due to pKa shifts of key protonatable residues. Biochemistry 40, 1850–1860 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. Wei, Y. & Fu, D. Selective metal binding to a membrane-embedded aspartate in the Escherichia coli metal transporter YiiP. J. Biol. Chem. 280, 33716–33724 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Wei, Y. & Fu, D. Binding and transport of metal ions at the dimer interface of the Escherichia coli metal transporter YiiP. J. Biol. Chem. 281, 23492–23502 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Ohana, E. et al. Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J. Biol. Chem. 284, 17677–17686 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dempsey, J. L., Winkler, J. R. & Gray, H. B. Proton-coupled electron flow in protein redox machines. Chem. Rev. 110, 7024–7039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaila, V. R. I., Verkhovsky, M. I. & Wikström, M. Proton-coupled electron transfer in cytochrome oxidase. Chem. Rev. 110, 7062–7081 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Nagle, J. F. & Morowitz, H. Molecular mechanisms for proton transport in membranes. J. Proc. Natl Acad. Sci. USA 75, 298–302 (1978).

    Article  CAS  Google Scholar 

  15. Le Duc, Y. et al. Imidazole-quartet water and proton dipolar channels. Angew. Chem. Int. Ed. 50, 11366–11372 (2011).

    Article  CAS  Google Scholar 

  16. Chen, Y. et al. Enhancement of anhydrous proton transport by supramolecular nanochannels in comb polymers. Nature Chem. 2, 503–508 (2010).

    Article  CAS  Google Scholar 

  17. Feringa, B. L. Molecular Switches (Wiley-VCH, 2001).

    Book  Google Scholar 

  18. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  19. Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines – Concepts and Perspectives for the Nanoworld (Wiley-VCH, 2008).

    Book  Google Scholar 

  20. Stoddart, J. F. The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 1802–1820 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Breslow, R. Biomimetic chemistry: biology as an inspiration. J. Biol. Chem. 284, 1337–1342 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Landge, S. M. & Aprahamian, I. pH activated configurational rotary switch: controlling the E/Z isomerization in hydrazones. J. Am. Chem. Soc. 131, 18269–18271 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Su, X. & Aprahamian, I. Switching around two axles: controlling the configuration and conformation of a hydrazone-based switch. Org. Lett. 13, 30–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Landge, S. M. et al. Isomerization mechanism in hydrazone-based rotary switches: lateral shift, rotation, or tautomerization? J. Am. Chem. Soc. 133, 9812–9823 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Su, X., Robbins, T. F. & Aprahamian, I. Switching through coordination-coupled proton transfer. Angew. Chem. Int. Ed. 50, 1841–1844 (2011).

    Article  CAS  Google Scholar 

  26. Schliwa, M. Molecular Motors (VCH-Wiley, 2003).

    Google Scholar 

  27. Macco, A. A., Godefroi, E. F. & Drouen, J. J. M. 2-(2-imidazolyl)acetophenones. Preparation and some reactions. J. Org. Chem. 40, 252–255 (1975).

    Article  CAS  Google Scholar 

  28. Pavlović, G., Racané, L., Čičak, H. & Tralić-Kulenović, V. The synthesis and structural study of two benzothiazolyl azo dyes: X-ray crystallographic and computational study of azo–hydrazone tautomerism. Dyes Pigments 83, 354–362 (2009).

    Article  CAS  Google Scholar 

  29. Gernencer, L., Taly, A., Baciou, L., Maroti, P. & Sebban, P. Effect of binding of Cd2+ on bacterial reaction center mutants: proton-transfer uses interdependent pathways. Biochemistry 41, 9132–9138 (2002).

    Article  CAS  Google Scholar 

  30. Utschig, L. M. & Thurnauer, M. C. Metal ion modulated electron transfer in photosynthetic bacteria. Acc. Chem. Res. 37, 439–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Paddock, M. et al. Mechanism of proton transfer inhibition by Cd2+ binding to bacterial reaction centers: determination of the pKa of functionally important histidine residues. Biochemistry 42, 9626–9632 (2002).

    Article  CAS  Google Scholar 

  32. Ishikita, H. & Knapp, E-W. Induced conformational changes upon Cd2+ binding at photosynthetic reaction centers. Proc. Natl Acad. Sci. USA 102, 16215–16220 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jaguar 7.7 (Schrödinger, New York, 2010).

  34. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  35. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  36. Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985).

    Article  CAS  Google Scholar 

  37. Huque, F. T. T. & Platts, J. A. The effects of intramolecular interactions on hydrogen bond acidity. Org. Biomol. Chem. 1, 1419–1423 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Ball, P. Welcome to the machine. Chem. World 7, 56–60 (2010).

    CAS  Google Scholar 

  39. Astumian, R. D. & Robertson, B. Imposed oscillations of kinetic barriers can cause an enzyme to drive a chemical reaction away from equilibrium. J. Am. Chem. Soc. 115, 11063–11068 (1993).

    Article  CAS  Google Scholar 

  40. von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nature Chem. 2, 96–101 (2010).

    Article  CAS  Google Scholar 

  41. Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Whitesides, G. M. & Ismagilov, R. F. Complexity in chemistry. Science 284, 89–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Devanathan, R. Recent developments in proton exchange membranes for fuel cells. Energy. Environ. Sci. 1, 101–119 (2008).

    Article  CAS  Google Scholar 

  45. Dubois, M. R. & Dubois, D. L. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc. Chem. Res. 42, 1974–1982 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors dedicate this manuscript to Sir Fraser Stoddart on the occasion of his 70th birthday. This work was supported by Dartmouth College, the Burke Research Initiation Award and the American Chemical Society Petroleum Research Fund. The authors thank R. Staples for the X-ray analysis, S. Voskian for his help with the graphic for the table of contents and D.S. Glueck for his input.

Author information

Authors and Affiliations

Authors

Contributions

All experiments were conducted by D.R. and J.T.F. with input from I.A. The calculations were carried out and interpreted by R.P.H. The manuscript was co-written by I.A. and D.R. with input from R.P.H.

Corresponding author

Correspondence to Ivan Aprahamian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3531 kb)

Supplementary information

Crystallographic data for compound QIH-Me (CIF 17 kb)

Supplementary information

Crystallographic data for compound QIH-Me(Z-H+) (CIF 20 kb)

Supplementary information

Crystallographic data for compound Zn(QIH-Me(Z-H+) (CIF 22 kb)

Supplementary information

Crystallographic data for compound Zn(QPH-Me(Z-H+)) (CIF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, D., Foy, J., Hughes, R. et al. A switching cascade of hydrazone-based rotary switches through coordination-coupled proton relays. Nature Chem 4, 757–762 (2012). https://doi.org/10.1038/nchem.1408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1408

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing